
Synchronized Morphological
and Syntactic Disambiguation for Arabic

 Daoud Daoud

Pricess Sumaya University for Technology
Daoud@batelco.jo

Abstract. In this paper, we present a unique approach to disambiguation Arabic
using a synchronized rule-based model. This approach helps in highly accurate
analysis of sentences. The analysis produces a semantic net like structure
expressed by means of Universal Networking Language (UNL)- a recently
proposed interlingua. Extremely varied and complex phenomena of Arabic
language have been addressed.

Keywords: Arabic Language, Synchronized Model, Disambiguation, UNL

1 Introduction

Compared to French or English, Arabic as an agglutinative and highly inflected
language shows its proper types of difficulties in morphological disambiguation, since
a large number of its ambiguities come from both the stemming and the categorization
of a morpheme while most of ambiguities in French or English are related to the
categorization of a morpheme only.

Phrases and sentences in Arabic have a relatively free word. The same
grammatical relations can have different syntactic structures. Thus, morphological
information is crucial in providing signs for structural dependencies.

Arabic sentences are characterized by a strong tendency for agreement between its
constituents, between verb and noun, noun and objective, in matters of numbers,
gender, definitiveness, case, person etc. These properties are expressed by a
comprehensive system of affixation.

Arabic uses a diverse system of prefixes, suffixes, and pronouns that are attached
to the words, creating compound forms that further complicate text manipulation.
Simultaneously, Arabic exhibits a large-scale ambiguity already at the word level,
which means that there are multiple ways in which a word can be categorized or
broken down to its constituent morphemes. This is further complicated by the fact that
most vocalization marks (diacritics) are omitted in Arabic texts.

However, the morphological analysis of a word-form, and in particular its
morphological segmentation, cannot be disambiguated without reference to context,

© A. Gelbukh (Ed.)
Advances in Computational Linguistics.
Research in Computing Science 41, 2009, pp. 73-86

Received 10/11/08
Accepted 15/12/08

Final version 30/01/09

and various morphological features of syntactically related forms provide useful hints
for morphological disambiguation.

Specifically, Arabic reveals strong interaction between morphological and
syntactic processing, which challenges the validity of NLP models that are based on
different phases (layers).

The available Arabic rule-based systems use the pipeline model (where
morphology is performed first and syntactic processing follows) for processing and
disambiguation. It is obvious that this approach is not adequate for Arabic. One the
other hand, one would not expect statistical techniques to perform well on infixing
languages like Arabic.

We suggest performing morphological and syntactic processing of Arabic text in a
single and joint framework; thereby facilitating the disambiguation process. We will
first discuss the sources of ambiguity in Arabic. Then, we discuss methods of
disambiguation based on the dependency grammar and the necessity of having a
synchronized model. Finally, we present the architecture and implementation of our
system.

2 Sources of Ambiguities in Arabic

Ambiguities are mainly caused by the dropping of the short vowels. Thus, a word can
have different meanings. In Arabic there are three categories of words: noun, verbs
and particles. The dropping of short vowels can cause ambiguities within the same
category or across different categories:

For example: the word قبل points out to many concepts (table 1).

Table 1: example of different meanings of a word

before particle
accept verb
Kiss verb
kisses Noun (broken plural)
to be accepted Verb
to be kissed verb

One needs to select the right meaning by looking at the context. Given the highly

inflection nature of Arabic, resolving ambiguities is syntactically possible among
different categories but harder within the same one.

Other source of ambiguity is caused by the compound forms that can be generated.
Arabic uses a diverse system of prefixes, suffixes, and pronouns that are attached to
the words, creating compound forms that further complicate text manipulation.
Identifying such particles is crucial for analyzing syntactic structures as they reveal
structural dependencies such as subordinate clauses, adjuncts, and prepositional
phrase attachments. This means that there are multiple ways in which a word can be
categorized or broken down to its constituent morphemes.

 For instance, the word آوارث can be segmented as presented in table 2:

74 Daoud D.

Table 2: Ambiguity caused by compound forms

catastrophes/tragedies Noun (broken plural)
like/such as + inheritor ka/PREP+wAriv/NOUN

On other cases, correct morphological analysis is required to resolve structural

ambiguities among Arabic sentence.
For example, consider the first sentence in table 3, the “ين” suffix attached to “ولد”

provides information about number (dual) and case ending (accusative). The
accusative sign determines the syntactic roles of each constituents of the first sentence
although it is in the basic order VSO. In the second sentence, the same suffix
disambiguate the syntactic roles despite that the object precedes the subject. In the
third sentence, the verb hit “ضربا” follows the two boys “الولدان” and there is a number
agreement between both of them. Additionally, the two boys “الولدان” takes the
nominative sign and hani “هانيا” takes the accusative sign suggesting that: Hani is the
object and the two boys are the subject.

Table 3: Examples of structural ambiguities

sentence Word order Syntactic roles
 الولدين

the two
boys

 هاني
Hani

 ضرب
hit

VSO Hani is the subject
The two boys are the object

 هاني
Hani

 الولدين
the two boys

 ضرب
hit

VOS Hani is the subject
The two boys are the object

 هانيا
Hani

 ضربا
hit

 الولدان
the two

boys

SVO Hani is the object
The two boys are the subject

These examples show how difficult to disambiguate Arabic. The segmentation is

driven by the context and the structural dependencies within the sentence. On the
other hand, syntactic roles are disambiguated by morphology.

3 Methods of Disambiguation

Many of the ambiguities can be resolved by looking at the context. The linguistic
contexture can resolve many of the ambiguities especially among different word
classes.

From the development point of view, processing and disambiguation of Arabic
depend in the following sources of information:

• The lexicon: provides basic and initial information about lexical items
(grammatical attribute).

• Adjacency constraints: specify the compatibility or the incompatibility of
two neighboring morphemes. For instance:

Synchronized Morphological and Syntactic Disambiguation for Arabic 75

o The Idafa construct1 cannot be followed by a preposition.
o A preposition cannot be followed by a preposition.
o A noun cannot follow a noun unless it is an adjective or the second

part of the idafa construct.
• Morphological dependencies [1]: describes the type and direction inflected

from one constituent to another. As shown in Figure 1 a verb that follows the
subject should agree in number and gender, thus the verb is morphologically
dependent on the subject. On the other hand, the subject is morphologically
dependent on the verb in case ending.

• Syntactic dependencies [1]: determine binary relations between the lexical
items in the sentence. In Figure 1, the verb hit is the head of two boys
(subject) and hani (object).

As shown figure 1, it is not necessarily that the syntactic dependent of a head is
also morphologically dependent. Hit and the two boys are exhibiting mutual
morphological dependencies.

ايناه
Hani

ابرض
hit

نادلولا
the two boys

subjectobject

agre e me nt
Ge nde r&Numbe r

C ase

Syntactic
Dependencies

Morphologi cal
Dependencies

MASC.DUAL.NOMMASC.DUALACC

case
Figure 1: Example of morphological and syntactic dependencies

To demonstrate how the above information can be employed in disambiguation,
consider the sentence shown in Figure 2. The ambiguity in the sentence is stemmed
from the following two word forms:

ابهذ
go (they/ two) (V)
gold (N) (tanween)

يماس
Samiىلا

to
قوسلا

the market

ابحاص
accompanying

two friends

adjacency constraint

object

modifier

agreement: Number & Gender

??

?
?

Figure 2: Example of ambiguity resolution

ا+صاحب (accompanying or two friends)

1 The IDAFA construction is an important grammatical structure in Arabic. It is a genitive

construction in which two nouns are linked in such a way that the second (second part of the
construction) qualifies or specializes the first (first part of the construction).

76 Daoud D.

ا+ذهب (they went) or gold (accusative)

The disambiguation process is started by using the adjacency condition that a noun

cannot be followed by a preposition (الى to). Thus, ذهبا (they went) is a verb (go)
[MASC, DUAL} not a noun. (Sami) سامي (a named entity) cannot be the subject of
the verb as there are no morphological dependencies (agreement in number). On the
other hand, a morphological dependencies exists between ذهبا and صاحبا suggesting
that it is (two friends) and that it is the subject. This solution is verified by the
existence of a morphological dependency between صاحبا (two friends) and سامي
(Sami): the suffix that indicates duality ending is ان (NOM), but when the noun is the
first part of the IDAFA construction the suffix should be ا which is the case in the
above sentence. So, Sami is the second part of the IDAFA construction.

لاملا
mone y

يماس
Daoud

ثراوك
catastrophes

يعرش
legit imate

ذخأ
took

subject

object

?

ك
lik e

manner

ad
jec

tiv
e

agreement

ثراو
inheritor

mod

Figure 3: An example of syntactic dependencies disambiguation

In the sentence shown in figure 3, disambiguation is driven by syntactic
dependencies. The verb (took) is the head of two dependents which are the subject
and the object of (took). This is considered a NUCLEAR PROCESS that contains
two participants in association with a ‘process’ element. Following [2], any additional
constituent is either:

o Indirect participant in a process.
o Additional information about a condition or circumstances pertaining to a

process.
In Modern Standard Arabic, both indirect participants and circumstances are

realized by two basic types of grammatical structure:
o Accusative nominals.
o Prepositional phrases of various kinds.

This is left us with one solution to “آوارث”; it is a prepositional phrase, meaning
“like/such as + inheritor”. Thus, it should be segmented correctly by recognizing the
first character as a preposition (ka) and the rest of the morpheme as the word “وارث
inheritor”. This solution is verified by the existence of both syntactic and
morphological dependencies with the word following it “ شرعي legitimate”.

4 The Necessity for a Synchronized Model

In light of the above, it is clear that in some cases syntactic dependencies provide cues
to perform segmentation and morphological analysis. On the other hand,

Synchronized Morphological and Syntactic Disambiguation for Arabic 77

morphological analysis and adjacency constraints are necessary to disambiguate
syntactic structures. Thus, the pipeline model (where morphology is performed first
and syntactic processing follows) will not suffice. In this model, a morphological
analyzer provides all possible solutions to the syntactic parsing which leads to high
magnitude of computational complexity of parsing. To demonstrate this, a word form
in the Penn Arabic Treebank (ATB) has, on average, two morphological solutions [3].
The complexity of any parsing algorithm will have a term order of:

∏ =

N

i ia1

where ai is the number of alternative solutions of the ith word [4]. Therefore, the
average complexity of parsing a 20 words Arabic sentence using the pipeline model
can reach up to 1048576. Thus, linguistic information tend to be more effective at
selecting between alternative solutions at the lower levels of the analysis and less
effective at doing so at the higher levels [5].

Different systems that process Arabic with some degree of disambiguation are
described in the literature [4, 6, 7]. All of them are rule-based systems adapting the
pipeline model. Attia [6] tried to reduce ambiguity by putting restriction on the lexical
items during the morphological analysis phase. He reported that his system took 141
minutes (CPU time) to parse a test suite of 229 sentences.

The system described in [4] took a more restricted approach by selecting one
solution during the morphological phase without having any syntactic information.

On the other hand, statistical techniques have widely been applied to automatic
morphological analysis for many languages including English, Turkish and Malay [8].
The main challenge for such systems is that in Arabic, any particular word will appear
less often than in English for a given text length and type. Thus, an Arabic datasets
will have a higher degree of sparseness than comparable English counterparts [9].
This is significant as it may affect the success of standard statistical techniques on
Arabic data. However, Diab, Hacioglu, and Jurafsky [10] reported a remarkable
performance for Arabic morphological Analysis using Support Vector Machines
(SVMs). They claim above 99% accuracy on tokenization and 95.49 accuracy on
POS tagging. Their tools are trained on a sample of 4519 sentence of ATB. For the
same size of English dataset, they reported a 94.97 accuracy on POS tagging, a result
that contradict the fact that the token to type ratio is smaller for Arabic texts than for
comparably sized English texts [8, 9]. Habash and Rambow [3] also reported high
accuracy rates in their system for tokenizing and morphologically tagging Arabic
words. They used similar approach reported in [10], but by incorporating the
Buckwalter morphological analyzer [11] into their system.

However, Larkly, Ballesteros and Conner [8] reported that their simple light
stemmer outperformed Diab’s morphological analyzer. One of their explanations to
this result is: “Arabic text contains so many definite articles that one could obtain the
claimed >99% tokenization accuracy simply by removing AL from the beginning of
words.”

Having this in mind, we will take a different approach from previous work. Our
system is a rule-based one, which is conceptualized by using dependency grammar, in
which linguistic structure is described in terms of dependency relations among the
words of a sentence; it does so without resorting to units of analysis smaller or larger
than the word. Although dependency grammar has its roots to the work of early

78 Daoud D.

Arabic Grammarians (Kitab al-Usul of Ibn al- Sarraj,d. 928), all of the existing (rule-
based) Arabic processing systems are built on phrase structure theory. Processing text
using phrase structure framework may suit languages like English, but not a nearly
free order language like Arabic [1, 12].

In the next section, we will describe our synchronized model, which is able to
perform morphological and syntactic processing of Arabic in as single, integrated and
synchronized framework, thus allowing shared information to support disambiguation
in multiple levels.

5 The Synchronized Model

Our system is coded using EnCo [13] which we used previously in developing the
first Arabic-UNL enconverter. EnCo is a rule-based programming language
specialized for the writing of enconverters (translators from a NL into UNL), and
provided by the UNL center.

5.1 The UNL

Universal networking language (UNL)[15-18] is a semantic, language independent
representation of a sentence that mediates between the enconversion (analysis) and
deconversion (generation). It is a computer language aiming at removing language
barriers from the Internet. The pivot paradigm is used: the representation of an
utterance in the UNL interlingua is a hypergraph where normal nodes bear UWs
("Universal Words", or interlingual acceptions) with semantic attributes, and arcs bear
semantic relations [13].

The sentence "Khaled bought a new car" can be expressed in UNL as:
agt(buy(icl>do(obj>thing),icl>purchase).@past.@entry, Khaled)
obj(buy(icl>do(obj>thing),icl>purchase).@past.@entry, car(icl>automobile))
mod(car(icl>automobile),new)

Figure 4: A UNL graph

Figure 4 shows the graph representation of this UNL expression. The node represents
the Universal Word (UW). Arcs represent binary relations such as "agt", "obj" and
"mod". Attributes are attached to UW to include information about time, aspect,

Synchronized Morphological and Syntactic Disambiguation for Arabic 79

number, modality, etc. In the previous sentence, the attribute "@past" was attached to
the event "buy" to indicate that the event happened in the past. The "@entry" attribute
is used to indicate the entry point or main node (head) for the whole expression.

5.2 The EnCo Rule-based Programming Language

EnCo [13] is a rule-based programming language specialized for the writing of
enconverters2 . EnCo works in the following way. An input string is scanned from left
to right. During the scan, all matched morphemes with the same starting characters
are retrieved from the dictionary and become candidate morphemes. The rules are
applied to these candidate morphemes, according to the rule priority, in order to build
a semantic network for the sentence. The character string not yet scanned is then
scanned from the beginning according to the applied rule; the process continues in the
same manner. The output of the whole process is a semantic network expressed in the
UNL format. If the dictionary retrieval or the rule application fails, it backtracks.

The abstract model underlying EnCo is a computing device consisting of:
• an input tape (node-list), containing at the beginning the input text (in one

node) and then the input morpheme or lexemes recognized so far, (each in
one node), followed by the remaining text (in one node).

• 2 active heads on that tape (left analysis window (LAW) and right analysis
window (RAW))

• a group of “context” heads (condition windows) surrounding the 2 active
heads.

• an output “node-net” sharing some nodes with the node-list.

RAWLAW

EnCo Engine

Input tape (node -list)

Node-Net (UNL graph)

 Rules

Dictionary

Output

CW CWCW
......

CW

Figure 5: The Computing model of EnCo

2 We use the term “enconverter”, and not “parser”, because the process involves a lexical

transfer from the “lexical space” of the NL at hand (while many have several “levels” such
are morphs, morphemes, word forms, lexemes, lemmas, derivational lexical families, and
word senses) to the “lexical space” of UNL (the UWs, and their hierarchy).

80 Daoud D.

The analysis rules have the following syntax (EnCo 1999):

<TYPE>...(<PRE2>)(<PRE1>){<LNODE>} {<RNODE>} (<SUF1>) (<SUF2>)… P<PRI>;
Where,
<LNODE>:="{“ [<COND1>] ":" [<ACTION1>] ":" [<RELATION1>]":" [<ROLE1>] "}"
<LNODE>:="{“ [<COND2>] ":" [<ACTION2>] ":" [<RELATION2>]":" [<ROLE2>] "}"
For example, the interpretation of the following rule is:
+{:+BLANK::}{BLK:::}P255;
Type of Operation = “+” which mean combination of right node to left node
Cond1 = nothing
Cond2 = BLK (white space)
Action1 = +BLANK (add the BLANK symbol to the existing list of grammatical
attributes or symbols found in the left node)
Action2 = nothing
P255 = Priority 255 (High)

5.3 Overall Analysis Strategy using EnCo

Developing EnCo rules requires a controlling mechanism that specifies which rule
should be fired and which rules should not be fired. For that, we use tactical symbols
written or removed from the input tape. Without using the KB (knowledge base), the
only way to analyze Arabic is to depend on linguistic knowledge and on what exists
in the sentence. Without having this controlling mechanism, this task would be
impossible.

For example, suppose we have the following sentence:
 ساق خالد السيارة الجديدة بسرعة آبيرة
Khalid drove the new car at a high speed.
To analyze this sentence correctly, we should discover the boundaries of the

entities that exist in the sentence. Since “Khalid” is not followed by an adjective, it is
allowed to be an agent of the verb “drive” and it is removed from the node-list (tape).
On the other hand, since “car” is followed by an adjective which has the same gender,
it is not allowed for “car” to be an object before handling the adjective first (“car” is a
dependent of “drive”, and “new” is a dependent of “car”: it is not allowed to process
the head before its dependents).

5.3.1 EnCo and Dependency Grammars
The formalism provided by EnCo rules embeds the language description despite the
fact that this description it is not clear or understandable by humans. This is because
this formalism is more oriented to the process of building a practical application more
than to describing the language.

EnCo is oriented towards the production of dependency graphs. It analyses a
sentence by establishing links between individual words and specifying the type of
link in each case. Each link connects a word (the "head") with one of its "dependents"
(an argument or modifier). A head can have many dependents, but each dependent
can have only one head. Of course, the same word can be the head in one link and the
dependent in another.

Synchronized Morphological and Syntactic Disambiguation for Arabic 81

Noun adjective

 <{N:adj_added::}{adj::mod:}P11;
mod

Verb Noun

 <{V,^agt:agt::}{N::agt:}P8;
agt

Verb Noun

 <{V,^obj:obj::}{N::obj:}P7;
obj

NounNounVerb adjective adjective

1 mod 1 mod
2 agt

3 obj

a simplified dependency representation of
 a verbal sentence in Arabic

Figure 6: The bidirectional mapping of EnCo rules and DG

Figure 6 shows also that the dependency representation of a sentence (arrows
point from each word to its dependents: modifiers or arguments) is inferred from the
EnCo rules.

Looking carefully at each rule, we find that it establishes a linking between two
words, one is dependent on the other. Some links are shown clearly in the UNL-
graph; others are implicit and are used within rules only. Each rule also indicates
head-dependent order which is very important in specifying the word order typology.
Dependent-Dependent order (the mutual order of two dependent of the same head) is
specified by the priority strategy or by using symbols.

In the above example, the “agt” rule has a higher priority than “obj” rule,
reflecting the fact that the subject of a verb is before its object.

In EnCo, this dependent-dependent order can be implemented alternatively by
using symbols. As an example, consider the following two rules:

<{V,^agt:agt::}{N::agt:}P8;
<{V,^objt,agt:obj::}{N::obj:}P9;
The second rule executes after the first one independently of their priorities. This

is because the “agt” symbol is added after the first rule and is a condition of the
second rule. This shows how dependent-dependent relation can be implemented.

As we have seen, there is no intermediate representation between the text and the
output graph. EnCo takes the input text and transforms it into the corresponding UNL
graph directly. It is the responsibility of the rules to ensure the right sequence of
execution as we have shown previously.

EnCo provides two mechanisms to ensure the right execution of the rules: rule
prioritization and use of tactical symbols. The developers have to use them correctly
as EnCo does not provide any other means to assist or to enforce this mechanism.

5.3.2 Disambiguation Mechanism
At any particular moment in time, EnCo is in a describable configuration. Between
this moment and the next discrete time stamp, the machine reads its input from the
tape, refers to rules controlling its behavior, and considering both the input and the
current configuration, determines what behavior to exhibit (i.e. erase/write on tape,

82 Daoud D.

move left, move right, create a an arc in the UNL graph, etc.), which determine the
next configuration.

لاملا
money

يماس
Sami

ثراوك
catastrophes

يعرش
legitimate

ذخأ
took

agtob
j

ك
like

ثراو
inheritor<<

RAWLAW

>>

Left-to-Right View

Node-List (input tape)

UNL Graph (Node-Net)

Figure 7: A describable configuration of EnCo

All information needed for disambiguation (adjacency, morphological

dependencies, syntactic dependencies, in addition to basic lexical attributes retrieved
from the dictionary) is accessible at any moment of processing. This information is
expressed by the symbols attached to each node in the input tape. Figure 7,
demonstrates the availability of syntactic dependencies needed to disambiguate
 The engagement of the verb took in “agt” and “obj” relationships, provides .”آوارث“
information to the enconverter to perform the correct segmentation and word
selection. More to the point, the enconverter will backtrack if it had done wrong
selection. For example, consider the following rule:

?R{V1,obj,agt:::}{NDE:::}P255;
This rule will force the enconverter to backtrack when it reaches the following
configuration: the left node is a verb engaged into two syntactic relations (agt and obj)
and the right node is an entity or a noun. The UNL expression of (Sami took the
money as a legitimate(valid) inheritor) is shown below:

;======================== UNL =======================
; شرعي آوارث المال سامي أخذ
[S]
agt(take(icl>event):00.@entry.@past, Sami:04)
aoj:01(valid:0L, inheritor:0G)
mod:01(like:0F.@entry, inheritor:0G)
obj(take(icl>event):00.@entry.@past, money:0B.@def)
man(take(icl>event):00.@entry.@past, :01)
[/S]
;==
;;Time 0.1 Sec
;;Done!

Synchronized Morphological and Syntactic Disambiguation for Arabic 83

To implement this enconverter with disambiguation capabilities, 1500 rules were
coded with the following functional classes:

• Backtracking rules. They are given the highest priority to prevent further
execution when a wrong situation or assumption is recognized..

• Morphological analysis rules. They are important because when they are
executed they provide information about morphological dependencies (by
using symbols) that might be useful in executing other rules. For example, an
accusative noun cannot be a subject. Morphological analysis is mainly done
by combination type rules (+ or -).

• Information collectors rules. They determine structural dependencies and
boundaries within the sentence by gathering information from the surface
structure.

• Syntactic dependencies rules. They are responsible for producing the UNL
graph by performing reduction and creating an arc in the UNL graph.

• The lowest priority is assigned to the “shift right” rules.

Longer sentences have been analyzed accurately with this system (.3 CPU time):

هزم الفريق السعودي هولندا على استاد فلسطين في مباراته الاخيرة في يوم الاحد وتمكن الفريق السعودي
دي الى النهائيات من تحقيق النصر بثلاث اهداف جميلة بعد ان لعبو بطريقة جماعية وبذلك يصل الفريق السعو

 محققا احلام الجمهور السعودي

The Saudi team defeated Holland on Palestine Stadium in its last match in Sunday
and the Saudi team was able to achieve victory by three wonderful goals as a result of
their collective play, so the Saudi team reaches the finals achieving the dreams of the
Saudi audience.

6 Conclusion

During the development period of the Arabic enconverter, the number of lexical items
added to UNL-Arabic dictionary reached 120,000 entries. This covers the UWs
provided by UNL center and the most frequent Arabic lexicon. More sophisticated
features are added to each entry to cover morphological, syntactic and semantics
aspects. In designing those features, we took into consideration the analysis and
generation processes. Functional words are also added to the dictionary along with all
prefixes and suffixes needed for Arabic morphology.

Our system managed to handle the following situation and sentences:
• Agreement and Morphological generation
• All type of relations and attributes
• Embedded and relative sentences
• Nominal and verbal sentences

The synchronized computational model of EnCo along with conceptualization
using Dependency Grammar provides us with the right mean to disambiguate a
language such as Arabic. This approach outperform pipeline model in terms of
computational time and accuracy. Our system disambiguate efficiently words that

84 Daoud D.

exhibit ambiguities across different categories (noun-verb ambiguity, particle- verb
ambiguity), but less efficient in words that fall within same category (noun-noun,
verb-verb). This is expected, as morphological and syntactic dependencies become
less decisive in disambiguation in those situations. Our future work will focus in this
issue.

References

1. I. Mel’tchuk, Dependency Syntax: Theory and Practice: State University of New York
Press, 1988.

2. S. C. Dik, The Theory of Functional Grammar: Foris, 1989.
3. N. Habash and O. Rambow, "Arabic tokenization, part-of-speech tagging and

morphological disambiguation in one fell swoop," in Proceedings of the 43rd Annual
Meeting on Association for Computational Linguistics. Ann Arbor, Michigan: Association
for Computational Linguistics, 2005.

4. R. Allan and M. Hanady, "Towards including prosody in a text-to-speech system for
modern standard Arabic," Comput. Speech Lang., vol. 22, pp. 84-103, 2008.

5. M. C. Macdonald, N. J. Pearlmutter, and M. S. Seidenberg, "The lexical nature of
syntactic ambiguity resolution," Psychological view, vol. 101, pp. 467-703, 1994.

6. M. A. Attia, "Handling Arabic Morphological and Syntactic Ambiguity within the LFG
Framework with a View to Machine Translation " in School of Languages, Linguistics and
Cultures, vol. Doctor of Philosophy: University of Manchester, 2008.

7. E. Othman, K. Shaalan, and A. Rafea, "Towards Resolving Ambiguity in Understanding
Arabic Sentence," presented at the International Conference on Arabic Language
Resources and Tools, NEMLAR, Egypt, 2004.

8. L. S. Larkey, L. Ballesteros, and M. E. Connell, "Light Stemming for Arabic Information
Retrieval " in Arabic Computational Morphology, A. Soudi, A. v. d. Bosch, and G.
Neumann, Eds.: Springer Netherlands, 2007.

9. A. Goweder and A. De Roeck, "Assessment of a significant Arabic corpus," presented at
Arabic NLP Workshop at ACL/EACL 2001, Toulouse, France, 2001.

10. M. Diab, K. Hacioglu, and D. Jurafsky., "Automatic Tagging of Arabic Text: From raw
text to Base Phrase Chunks," presented at HLT-NAACL, 2004.

11. T. Buckwalter, "Buckwalter Arabic Morphological Analyzer Version 1.0," Linguistic Data
Consortium (LDC), 2002.

12. M. A. Covington, "A dependency parser for variable–word–order languages," in Computer
assisted modeling on the IBM 3090: Papers from the 1989 IBM Supercomputing
Competition, vol. 2, K. R. Billingsley, H. U. Brown III, and E. Derohanes, Eds. Athens,
Greece: Baldwin Press, 1992, pp. 799–845.

13. H. Uchida, "Enconverter Specifications," UNU/IAS UNL Center, 1999.
14. H. Uchida, "Deconverter Specifications," UNU/IAS UNL Center, 1999.
15. H. Uchida and M. Zhu, "The Universal Networking Language Beyond Machine

Translation," 2001.
16. H. Uchida and M. Zhu, "The Universal Networking Language specification, version 3.0,"

2003, Ed.: UNDL Foundation, 2003.
17. I. Boguslavskij, "UNL from the linguistic point of view," presented at MMA'01, 2001.
18. C. Boitet, "Gradable quality translations through mutualization of human translation and

revision, and UNL-based MT and coedition," in Universal Networking Language,
advances in theory and applications, vol. 12, Research in Computing Science, J.
Cardeٌosa, A. Gelbukh, and E. Tovar, Eds. Mexico, 2005, pp. 393—410.

Synchronized Morphological and Syntactic Disambiguation for Arabic 85

