
David J. Brooks and Mark G. Lee

School of Computer Science
University of Birmingham

Birmingham, B15 2TT, UK
d.j.brooks, m.g.lee@cs.bham.ac.uk

Abstract. Predictive text interfaces allow for text entry on mobile phones,
using only a 12-key numeric keypad. While current predictive text sys-
tems require only around 1 keystroke per character entered, there is
ambiguity in the proposed words that must be resolved by the user. In
word-based approaches to predictive text, a user enters a sequence of
keystrokes and is presented with an ordered list of word proposals. The
aim is to minimise the number of times a user has to cycle through
incorrect proposals to reach their intended word.
This paper considers how contextual information can be incorporated
into this prediction process, while remaining viable for current mobile
phone technology. Our hypothesis is that Transformation-Based Learn-
ing is a natural choice for inducing predictive text systems. We show
that such a system can: a) outperform current baselines; and b) correct
common prediction errors such as “of” vs. “me” and “go” vs. “in”.

1 Introduction

Since the widespread adoption of the Short Message Service (SMS) protocol,
“text-messaging” has become a primary communication medium, and the need
for efficient text-entry interfaces on mobile phone keypads has become paramount.
The T9 – or “text on 9 keys” – interface allows users to enter alphabetic char-
acters using only 9 keys. Each of these 9 keys is mapped to a set of alphabetic
characters according to international standard ITU-T Recommendation E.161 [1,
p.1], shown in Figure 1. Alternative mappings have been considered [2], but are
unlikely to be adopted because some dialing systems require adherence to the
ITU standard. Therefore, we consider only the ITU keypad mappings here.

The T9 mapping associates a single key with multiple letters, introducing am-
biguity in key-entry, which must be resolved by the input interface. Early systems
employed multi-tap interfaces, where each letter is unambiguously identified by a
number of successive “taps” on a numeric key. More recently, multi-tap interfaces
have been superceded by single-tap – or “predictive text” – interfaces1, which
have been shown to reduce the number of keystrokes required per character [3].

1 In many single-tap interfaces, multi-tap entry is still used to enter novel words.

Improving Word-Based Predictive Text Entry
with Transformation-Based Learning

© A. Gelbukh (Ed.)
Advances in Natural Language Processing and Applications
Research in Computing Science 33, 2008, pp. 237-248

Received 31/10/07
Accepted 07/12/07

Final Version 17/01/08

Fig. 1. A mobile phone keypad following the ITU-T E.161 mapping of numeric keys to
alphabetic symbols. Non-standard mappings exist for key 1 (symbols such as punctuation),
key 0 (spaces), and the * and # keys – one of which is usually assigned to “cycle”

In a single-tap interface, the ambiguity between characters is ignored upon
entry: to enter a character requires only a single tap of the associated key. How-
ever, because there are multiple letters associated with the key-tap, the system
must consider the possibility of extending the current word with each of the
associated letters. Some of these extensions will be valid (part-)words, so are
retained; others are invalid, so are discarded. Single-tap entry systems are sur-
prisingly effective because, after the first few key-taps of a word, there are usually
relatively few words matching that sequence of taps.

Despite improved performance, single-tap systems are still subject to ambi-
guity at the word level. For instance, the sequence of key-presses 4 - 6 - 6 - 3
corresponds to the words “good”, “gone”, “home”, “hone”, “hood” and “hoof”,
as well as representing the first four letters of words such as “immediate” and
“honey”. Single-tap entry systems are referred to as “predictive” because they
must predict the user’s intended word, given the sequence of keystrokes. The
present work is concerned with how contextual information can be incorporated
into this prediction process. Our hypothesis is that Transformation-Based Learn-
ing [4] is a natural choice for inducing effective predictive text systems, and has
the advantage that the resulting systems can be implemented on current mobile
phone technology.

The remainder of this paper is organised as follows. In Section 2 we give
a formal description of word-based predictive text systems, and discuss some
existing systems that achieve reasonable predictive behaviour. In Section 3 we
discuss part-of-speech (POS) tagging. We argue that there are analogies between
this task and word-based text prediction, and, with this in mind, we examine the
Transformation-Based Learning (TBL) approach to POS tagging. In Section 4
we describe a novel instantiation of TBL for learning a word-based predictive text
system. We describe a series of experiments in Section 5, including evaluations
of our system against previous work. Finally, we discuss some limitations of the
work in Section 6, and examine some possibilities for future research.

238 Brooks D. and Lee M.

2 Word-Based Predictive Text Systems

In this paper, we consider word-based predictive text (henceforth WBPT) sys-
tems, where sequences of key-presses are mapped to sets of matching words. A
WBPT system may be formally defined as follows.

Messages in a WBPT system are sequences of words, where words are de-
limited by space and punctuation characters. The system has a dictionary D
containing (a subset of) valid words from the text-entry language2. A user en-
ters text by selecting words from the dictionary. Words are selected using a
sequence of key-presses, where a key-press is represented by the corresponding
numeral in the ITU-T E.161 mapping. A sequence of key-presses is represented
as an ordered list of numerals, termed a signature. For example, the sequence of
key-presses 4 − 6 − 6 − 3 is represented by the signature 〈4663〉.

Each signature maps on to a (possibly empty) set of matching words – termed
a match-set – which must be retrieved from the dictionary. This set is then or-
dered into a list, which we call the match-list. Match-list ordering is the principal
difference between WBPT algorithms, and the most important factor influencing
predictive performance. An optimum WBPT system should order the match-list
from best to worst, according to context. Match-list ordering is central to our
approach, and is used for both supervision and evaluation.

There are, of course, other ways to characterise predictive text systems. Let-
terWise [5] models transitional probabilities between letters, and so is amenable
to novel compounding. However, this approach does not guarantee formation
of valid words, and, more importantly, is incapable of resolving word-level pre-
diction errors – such as deciding whether “good” or “home” better reflects a
user’s intended word. We believe that the approach described below resolves
these issues, and may be readily extended to improve compounding systems.

2.1

The most näıve algorithms for ordering a match-list simply assign arbitrary or-
derings. This is clearly deficient, since, for a match-list of length N , an arbitrary
ordering will start with the best candidate only 1

N of the time, while a worse
match will be selected first N−1

N of the time – meaning that users are highly
likely to experience frustration in response to an arbitrary proposal!

Most existing WBPT systems employ a surprisingly effective algorithm: or-
der the match-list according to descending word-frequency. We will call this the
most-frequent first (MFF) algorithm. For exposition, we consider word frequen-
cies taken from the 100-million-word British National Corpus (BNC)3. Table 1
shows the match-list for the signature 〈4663〉, ordered top-down.

MFF makes sensible predictions most of the time, but inevitably there are
exceptions. A user will, at times, wish to words other than the most frequent, but

2 Novel words may be added to the dictionary, but are ignored here because the
associated cost is independent of the WBPT system.

3 BNC statistics were obtained through the View/BNC interface [6].

Determining Match-List Order

Improving Word-Based Predictive Text Entry with Transformation-Based Learning 239

Table 1. The match-set for 〈4663〉, with occurrence frequencies from the BNC.

Frequency Word

80204 good
50539 home
18474 gone

960 hood
125 hoof
45 hone

since rarer words will be chosen less often (by definition) these exceptions are
often tolerable. However, there are some predictions that are more problematic.

Consider the signature 〈63〉 and corresponding match-set {me, of, . . .}. Both
“of” and “me” are highly frequent words, occurring 2887937 and 2498656 times
in the BNC respectively. MFF would use the match-list (of, me, ...), and make
at least 2498656 errors when classifying “me”. These errors become more con-
spicuous in certain contexts. If the preceding word is “to” the situation changes
dramatically: “to me” occurs 14635 times in the BNC, while “to of” occurs only
76 times4. MFF ignores this contextual information, predicting “of” every time.

2.2

From the above example, we can see that MFF could be improved by incorporat-
ing contextual information – such as whether or not the previous word is “to”.
The HMS system [7] adopts this approach, supplementing a dictionary with a
word bigram model. Each prediction is conditioned on the previous word, and
HMS backs-off to MFF where reliable bigram statistics are unavailable. While
this approach offers clear performance gains, bigram models have a large memory
requirement – O(n2) where n is the size of the dictionary.

Other recent approaches have employed “common-sense” reasoning [8], us-
ing ontological databases to create pragmatic links in order to aid prediction.
However, we believe that most prediction errors can be resolved with local syn-
tactic information, and that common-sense approaches deal with more peripheral
cases. In addition, common-sense approaches require significant amounts of both
memory and computation.

The operating environment for a predictive text system is typically a mobile
device such as a cellular phone handset. While such devices have become increas-
ingly powerful, the processing constraints are still relatively modest. Predictive
text systems need to operate in real-time – at least as fast as rapid “texters”
– and although systems like MFF are viable within these constraints, more ex-
pensive n-gram and reasoning techniques are not. Although these approaches
may become viable in the long-term, we believe that practical improvements to
WBPT may still be achieved in the short-term.
4 Most occurrences of “to of” may be ascribed to mistranscription of “have” – as in

“You ought to of seen his face” (found in document ACB of the BNC).

Improving Baseline Performance by Considering Context

240 Brooks D. and Lee M.

3 Supervised Part-of-Speech Tagging and Predictive Text

Part-of-speech (POS) tagging is the process of identifying the syntactic role of
a word from its surface form and surrounding context. Tagging is non-trivial, as
words may be ambiguous, often covering distinct “senses”, possibly belonging to
different parts-of-speech. For instance, “hope” can be either a noun or a verb.

In many ways, the scenario of POS tagging is similar to the word-based pre-
dictive text problem. First, simple taggers attempt to find the best tag for a
given word, while we are attempting to find the correct word for a given signa-
ture. Second, training a supervised POS tagger requires a corpus where words
are annotated with their correct tags. Third, an effective baseline system for
supervised tagging is simply to assign the tag that accounts for most tokens of a
given word type, which is equivalent to our MFF predictive text system. Finally,
supervised tagging systems incorporate contextual information to improve upon
the baseline system. Markov Model taggers (such as those described in [9]) con-
dition the choice of the current tag on both the word and the n previous tags –
much as n-gram WBPT systems condition predictions based on previous words.

The above similarities suggest that POS tagging systems are analogous to
WBPT systems, and effective POS tagging algorithms may yield improved WBPT
systems. With this in mind, we will now discuss the Brill tagger – a rule-based
POS tagger for incorporating contextual cues into the tagging process – which
we believe can be readily adapted for WBPT.

3.1 Transformation-Based Learning

n-gram techniques haven proved successful for both tagging and WBPT, be-
ing capable of modelling local contextual information. However, n-grams devote
considerable space to modelling rare events. Alternative learning strategies exist
that incorporate local context while modelling primarily common events, and
this idea is central to Transformation-Based Learning (TBL) [4]. TBL is an
error-driven learning technique, which aims to improve a upon any given anno-
tation system by identifying common errors and proposing rules to correct these
errors where they occur. We will discuss the nature of a Transformation-Based
learner in terms of POS tagging, with a view to treating WBPT within the same
framework.

The typical operating environment for a TBL system is shown in Figure 2.
A TBL system takes as input an initial guess at the correct POS for a corpus.
Often, this is the output of a baseline (like MFF), but may be the output of any
tagging system. The TBL learner then compares this initial guess to the “truth”
– a gold-standard annotated version of the text, which in the case of tagging
is manually-tagged corpus data. From this, the learner creates a list of errors,
ordered by some objective criterion (usually just the frequency of the error, but
any objective criterion will suffice).

The list of errors is used to propose correction rules, or transformations. Each
transformation may be decomposed into two parts:

Improving Word-Based Predictive Text Entry with Transformation-Based Learning 241

Fig. 2. The training environment for a Transformation-Based Learning system

A rewrite rule A rule that “transforms” an incorrect tag into the correct tag.
A triggering environment Some set of observed contextual features that in-

dicate when a particular transformation should be used.

As an example, we might consider feasible transformations for “hope”, which
occurs in the BNC as both a verb (VVB - 7827 times) and as a noun (NN1 - 4106
times)5. Accordingly, the most-frequent tag system will always designate “hope”
to be a verb. Clearly, from the frequencies, there are at least 4106 cases where
this classification is incorrect, which we might correct using transformation. One
conceivable transformation of “hope” might be:

Rewrite rule: change tag from VVB to NN1
Trigger env.: previous word is “the”.

In the BNC, this transformation would correct 1490 mistagged instances of
“hope”.

TBL is a greedy algorithm. At each iteration, the best transformation –
according to the objective criterion – is selected and applied to the corpus.
This re-annotated corpus is then used as input to the next iteration. Learning
continues until the level of improvement becomes negligible.

TBL has been shown to be a very effective algorithm for POS tagging, and
this success is due to a number of factors. First, it incorporates contextual infor-
mation only where it is useful for tagging decisions. Second, it is easy to train,
although it does require a manually-tagged corpus as input. Finally, the resulting
transformation rules are compact and more easily understandable than stochas-
tic models. We believe that these features make Transformation-Based Learning
ideal for WBPT, and will now consider how the learner must be altered for this
new domain.

5 The BNC contains 17192 occurrences of “hope”, and VVB and NN1 are the two
most frequent tags. Verb-infinitives, proper-nouns and compound tags (e.g. VVB-
NN1) account for the remainder, but do not affect our example.

242 Brooks D. and Lee M.

4

In this section, we describe a novel instantiation of Transformation-Based Learn-
ing for WBPT. First, we describe our procedures for deriving a training corpus,
discussing the form of data and nature of supervision. Second, we specify the
form of transformations we use for WBPT. Third, we discuss a definition of error
that is based on the human experience of single-tap interfaces. Finally, we de-
scribe a novel objective criterion for measuring prediction errors, incorporating
this that is similar to the human experience of correction, and finally, considering
how transformations should be specified in this domain.

4.1

As we observed earlier, TBL is primarily a supervised learning framework, and
as such requires a training set that is annotated with correct prediction deci-
sions. For WBPT, we require a data-set that shows the correct word for a given
signature in the context of a message. Although such data-sets are not widely
available, we can derive them automatically from any raw text corpus. Each
word maps to a single signature, which can be trivially retrieved to create our
“tagged” corpus. Consider the following sentence:

I want to go home.

For each word, we derive the corresponding signature and label the text:

4/I 9268/want 86/to 46/go 4663/home

From this we can also derive a signature-only version of this sentence:

4 9268 86 46 4663

This method can be used to generate a signature corpus, which can act as input
to any WBPT system. The output of such a system will have the same sequences
of signatures, but may assign different words according to the prediction model.
For instance, MFF would produce the following prediction:

4/I 9268/want 86/to 46/in 4663/good

Thus, we have a gold-standard tagged text, and an input corpus comprising
only of signatures. We can use the gold-standard as a training resource for su-
pervised learning, and as a sample from which we can estimate signature-word
frequencies for our baseline algorithm.

4.2

The form of transformations for predictive text is similar to that for POS tagging,
with some important differences. Recall that transformations comprise a rewrite
rule and a triggering environment. For WBPT, our rewrite rules alter the order
of the match-list by promoting the correct word to the head of the list.

A TBL Approach to Predictive Text

Improving Word-Based Predictive Text Entry with Transformation-Based Learning 243

Data and Supervision

Transformations for Predictive Text

The triggering environments specify which contextual features are important
for correcting erroneous predictions. There are two important differences between
POS tagging and predictive text that affect triggering environments. First, a
tagger may examine the components (e.g. morphemes) of the word being tagged,
whereas in predictive text the mapping between signature and word precludes
this. Second, text messages are entered in linear order, whereas POS taggers
are conventionally applied to entire sentences. While the Brill tagger considers
subsequent POS tags as context, this is not possible in a linear entry system. In
our WBPT system, we limit triggering environments to the previous two words
in the sentence.

4.3

Once we have our gold-standard corpus, we need to be able to measure the
prediction error of a given WBPT system. The human experience of correcting
predictive text systems provides a natural way to do this. Upon entering a sig-
nature, a user is presented with a list of matching words. The user has to cycle
through this list until they find their intended word, by pressing a designated
cycle key6. Thus, where the correct word heads the list, no cycles are required;
where the correct word is 4th in the list, 3 cycles are required. This quantity –
which we will call the cycle count – naturally represents the error of any given
word prediction.

We can trivially calculate cycle-count from a word and its match-list: the
cycle-count is simply the index of that word within the match-list, where indices
start from zero. The prediction error for a WBPT system over an entire corpus,
E, is obtained by summing cycle-counts over all predictions.

4.4

Transformation-Based Learning systems must be able to identify candidate trans-
formations, from which the “best” selection is selected and applied at each learn-
ing iteration. Quality is traditionally defined in terms of prediction error, but in
our scenario such a definition can lead to problems.

Recall the example signature 〈63〉, where MFF always predicts the word “of”
but never predicts “me”. Since “me” is a common word, this is a conspicuous
errors and a good candidate for transformations. Now consider classifying 〈63〉 if
we know that the previous word is “made” – the 15th most-frequent word preced-
ing “me” in the BNC (1100 occurrences). Based purely on cycle-counts, “made”
seems a strong contextual cue, and we might expect to learn the transformation:

Rewrite rule: change word from “of” to “me”
Trigger env.: previous word is “made”.

6 The cycle key is not part of the ITU-T E.161 specification, but is usually mapped
to either the * or # key.

244 Brooks D. and Lee M.

Measuring Prediction Error

Selecting Transformations

which would correct 1100 misclassifications. However, “made” occurs more fre-
quently before “of” (2783 occurrences in the BNC) – all of which would be
erroneously transformed by the above transformation. Thus, the above transfor-
mation would do our system considerably more harm than good.

To alleviate this problem, we need a criterion that reflects the strength of
relation between a rule and its triggering environment. Therefore, we define
transformation quality as:

TQ = Ew
M × |w|× P (w|σ, T)2 (1)

where Ew
M is the cycle-count for intended-word w and match-list M , σ is the

signature of w and T is the triggering environment. The first term, Ew
M , is just

the cycle-count as before, and when multiplied by the second term |w|, is the
cycle-count across all occurrences of a word-type w across the corpus. The third
term P (w|σ, T) represents the proportion of the time that w is the correct word,
given a signature and triggering environment7.

We can examine this equation intuitively. The first two terms capture cycle-
counts as before, making the system more likely to correct frequently misclassifi-
cations (e.g. “of” to “me”), than rare misclassifications (e.g. “good” to “hone”).

The last term represents the fidelity of relationship between trigger and word.
If a trigger is associated with many members of the match-list it will not help us
make a correction. Thus, “to of” warrants a transformation because “to” occurs
rarely with “of” but often with “me”; however “made of” does not warrant a
transformation because “made” occurs frequently with both “of” and “me”, and
therefore affords little information with which to make a decision.

5 Experimental

In the previous section, we described a novel TBL system for predictive text,
which can be trained and evaluated on corpus data. In this section we will
describe a series of experiments where we train and test our learning system and
compare it to baseline and n-gram systems.

We trained our learning system on data taken from the BNC. Specifically,
we created a single file containing all sentences of the BNC, and randomised
the order between sentences (but not between words). From this corpus, we
created 33 disjoint partitions, each comprising 180000 sentences (around 3.3
million words). We split each partition into a training set of 162000 sentences
and a test set of 18000 held-out sentences – achieving a rough 90:10 split of
training- to test-data in each partition.

We trained three systems on each of these corpora: the MFF baseline system;
a bigram system with back-off; and our Transformation-Based learner, which

7 We square P (w|σ, T) only to increase our preference for strong relationships be-
tween triggering environments and predictions: large probabilities indicate strong
relationships, small probabilities indicate weak relationships, and squaring a small
probability will make it even smaller.

Setup

Improving Word-Based Predictive Text Entry with Transformation-Based Learning 245

uses MFF as its initial input. Table 2 shows the mean and standard deviation in
prediction accuracy for each system. We calculate significance levels (p-values) of
differences in error-rates using a two-tailed paired t-test. The results show that

Table 2. Average accuracy (including standard-deviation) of three predictive text systems:
MFF; a Bigram model with back-off; and Transformation Based Learning

System Accuracy Stdev

MFF 89.9189% (0.0737)
Bigram with backoff 90.5798% (0.0739)
TBL 90.6149% (0.0736)

MFF is a relatively good baseline system, performing at close to 89.92% accuracy.
Both the bigram model and our TBL system achieve statistically significant
increases in accuracy (of 0.66%, with negligible p-values) over the MFF baseline.
This is to be expected as both these models incorporate contextual information,
which should enhance prediction accuracy. Interestingly, our TBL system also
achieves a small and significant increase in accuracy over the bigram model
(0.04%, p = 0.00027). Initially this seems counter-intuitive because the bigram
model encodes statistics even for rare preceding words. However, the results
are understandable in terms of novel words in the held-out sample. To make
a prediction for word wn where the preceding word wn−1 was not part of the
training data, the bigram model backs off to MFF and is therefore only as good as
MFF over those cases. In contrast, our instantiation of TBL considers triggering
environments covering either or both of two preceding words, wn−2 and wn−1.
Thus, even where wn−1 is novel, some accurate predictions can still be made
if wn−2 is part of a triggering environment. Such discontinuous affects are not
captured in n-gram model.

The performance of our system is encouraging, so we should also examine our
claims about memory requirements. For each experiment, around 1200 trans-
formations were proposed – a negligible increase in comparison to the size of
dictionary involved. We should also examine the transformations produced by
the system, to see if they are only encoding important contextual information.

We chose one of the 33 experiments at random. During this experiment,
our system proposed 1225 transformations, the top 10 of which are shown in
Table 3. This list includes some of the very frequent errors identified earlier. The
system successfully identifies transformations to correct “of” to “me”, and “in”
to “go”, amongst others. Many of these transformations make syntactic sense: for
instance, we are unlikely to see “to in”, so the transformation “in” → “go”: 〈∗ to〉
corrects this to “to go”. However, we can also see some interesting exceptions.
First, there are some contentious triggers: “there” → “these”: 〈∗ in〉 represents
the increased likelihood of “in these”, but “in there” is a feasible construction.
Second, there are some plausible constructions that would probably not be used
much in text messages, such as “civil war”. This reflects a bias specific to our

246 Brooks D. and Lee M.

Table 3. The top 10 transformations for a randomly chosen experiment, ordered by number
of corrections in training corpus. For each transformation, the most frequent triggers are
shown. Each trigger is an ordered pair of preceding words, where ∗ represents any word

Corrections Rule Example Triggers

3229 them → then 〈∗ and〉, 〈∗ , 〉 , 〈∗ .〉, 〈∗ is〉
1930 of → me 〈∗ to〉, 〈∗ for〉, 〈∗ told〉, 〈∗ let〉
1613 in → go 〈∗ to〉, 〈∗ n′t〉, 〈∗ ′ll〉, 〈∗ can〉
1302 on → no 〈there ∗〉, 〈award ref〉, 〈I have〉, 〈∗ oh〉
1280 there → these 〈∗ of〉, 〈∗ all〉, 〈∗ to〉, 〈∗ in〉
1136 up → us 〈∗ the〉, 〈∗ of〉, 〈∗ to〉, 〈∗ for〉
957 he → if 〈∗ even〉, 〈∗ see〉, 〈and , 〉, 〈∗ asked〉
655 might → night 〈∗ last〉, 〈∗ the〉, 〈∗ a〉, 〈∗ all〉
560 an → am 〈∗ I〉
556 was → war 〈∗ the〉, 〈∗ world〉, 〈∗ civil〉, 〈∗ of〉

training corpus – an issue we will discuss below. Finally, there are examples
of ambiguity in the triggering environments: in the context 〈∗ the〉 “no” is an
abbreviation of “number”, and “us” is an abbreviation for “United States”.

We should also examine the errors made by our original classifier, and the
proportion of those errors that are corrected by our system. Figure 3 shows the
30 most costly words in our chosen test set. The bars show the original error

 0

 100

 200

 300

 400

 500

 600

 700

 800

if no then
m

e
these
us go m

r
hom

e
night
am w

ar
saw
pay
view
soon
gone
food
kind
gave
past
care
offer
post
cut
seem
gam

e
red
w

ide
co nine

N
um

be
r

of
 E

rr
or

s

Word

TBL Errors
Original Errors

Fig. 3. 30 most-frequent errors made by MFF, with proportion remaining after TBL

count per word (in white), and the TBL error count as a proportion (hatched).
For example, the first bar represents the word “if”, for which there are 724 errors
in MFF, and 646 in TBL system. Although the first two words – “if” and “no”
– is largely uncorrected, for many of the subsequent words – including “then”,
“me”, “these”, “us”, “go” and “am” – our system provides effective correction.

Improving Word-Based Predictive Text Entry with Transformation-Based Learning 247

6 Future

We have seen that TBL can improve predictive text systems, but there are
still areas where our approach could be improved. First, our system has been
evaluated only in a Machine-Learning context. User-testing would give a bet-
ter indication of performance in situ, and would permit comparative evaluation
against other predictive text systems.

More crucially, our experiments use only BNC data, which does not ade-
quately represent the language used in text messages. However, our methods
are language-independent, and can easily be applied to more representative cor-
pora and to other languages. Future work should consider training on SMS or
instant-messaging corpora, and adapting our system to users’ idiolects.

We have described a novel Transformation-Based learner for improving pre-
dictive text systems, in a language-independent manner. We have shown that
the resulting WBPT systems achieve statistically significant improvements in
prediction accuracy over bigram models, and that these systems are capable of
correcting many problematic misclassifications in English. We believe our sys-
tem offers tangible improvements for predictive text interfaces, and that it works
within the constraints of current technology.

References

1. International Telecommunication Union: E.161: Arrangement of digits, letters and
symbols on telephones and other devices that can be used for gaining access to a
telephone network. http://www.itu.int/rec/T-REC-E.161-200102-I/en (2001)

2. Gong, J., Tarasewich, P.: Alphabetically constrained keypad designs for text entry
on mobile devices. In: CHI ’05: Proceedings of the SIGCHI conference on Human
factors in computing systems, New York, NY, USA, ACM Press (2005) 211–220

3. MacKenzie, I.S.: KSPC (keystrokes per character) as a characteristic of text entry
techniques. In: Mobile HCI ’02: Proceedings of the 4th International Symposium
on Mobile Human-Computer Interaction, London, Springer-Verlag (2002) 195–210

4. Brill, E.: Transformation-based error-driven learning and natural language process-
ing: A case study in part-of-speech tagging. Computational Linguistics 21 (1995)
543–565

5. MacKenzie, I.S., Kober, H., Smith, D., Jones, T., Skepner, E.: Letterwise: Prefix-
based disambiguation for mobile text input. Technical report, Eatoni (2001)

6. Davies, M.: The View/BNC interface. http://corpus.byu.edu/bnc/ (2004) Accessed
on 23rd October 2007.

7. Hasselgren, J., Montnemery, E., Nugues, P., Svensson, M.: HMS: A predictive
text entry method using bigrams. In: Proceedings of the Workshop on Language
Modeling for Text Entry Methods, 10th Conference of the European Chapter of
the Association of Computational Linguistics, Budapest, Hungary, Association for
Computational Linguistics (2003) 43–49

8. Hawes, N., Kelleher, J.: Context-sensitive word selection for single-tap text entry.
In: STAIRS 2004: Proceedings of the Second Starting AI Researchers’ Symposium,
IOS Press (2004) 217–222

9. Charniak, E., Hendrickson, C., Jacobson, N., Perkowitz, M.: Equations for part-of-
speech tagging. In: AAAI. (1993) 784–789

Work and Conclusions

248 Brooks D. and Lee M.

