
A Two-Pass Search Algorithm for Thai
Morphological Analysis

Canasai Kruengkrai and Hitoshi Isahara

Graduate School of Engineering, Kobe University
1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 Japan

National Institute of Information and Communications Technology
3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0289 Japan

{canasai,isahara}@nict.go.jp

Abstract. Considering Thai morphological analysis as a search prob-
lem, the approach is to search the most likely path out of all candidate
paths in the word lattice. However, the search space may not contain all
possible word hypotheses due to the unknown word problem. This pa-
per describes an efficient algorithm called the two-pass search algorithm
that first recovers missing word hypotheses, and then searches the most
likely path in the expanded search space. Experimental results show that
the two-pass search algorithm improves the performance of the standard
search by 3.23 F1 in word segmentation and 2.92 F1 in the combination
of word segmentation and POS tagging.

1 Introduction

Morphological analysis has been recognized as a fundamental process in Thai
text analysis. In Thai, words are written continuously without word boundaries
like other non-segmenting languages (e.g., Chinese and Japanese). However, the
Thai writing system has certain unique characteristics. For example, in order
to form a smallest linguistic unit, a character cluster, including a consonant, a
vowel, and/or a tonal mark, must be formed.

Thai morphological analysis generally involves two tasks: segmenting a char-
acter string into meaningful words, and assigning words with the most likely
part-of-speech (POS) tags. Considering Thai morphological analysis as a search
problem, the approach is to search the most likely path out of all candidate
paths in a word lattice. Figure 1 illustrates the word lattice of a string analysis,
consisting of possible word hypotheses and their connections. The path indicated
by the bold line is the correct segmentation.

Discriminating such path from other candidate paths is a difficult problem
itself, and requires a dynamic programming search (e.g., the Viterbi algorithm).
The problem becomes more difficult, since the search space is often imperfect.
Some word hypotheses are missing due to the unknown word problem. Unknown
words are words that do not occur in the system dictionary or the training corpus.
The system has no knowledge to use in generating hypotheses for unknown
words.
© A. Gelbukh (Ed.)
Advances in Natural Language Processing and Applications
Research in Computing Science 33, 2008, pp. 81-92

 Received 15/10/07
 Accepted 07/12/07

 Final Version 21/01/08

���

����	
����	 ����	 ��������� ������ ������� �������

�
�����

������� ���	
!��������

����"#$�

����� �����

������%&'�
�� ���������� ���
����� !���%()*+,-,.,)/%,0+1//,210.1%+1.30,451%,0%+*)06/)+,708 �� !��������

9��

&'�����

&'�����

&'�
�� ����� ���������� �������
�� �����

����	

�������%&'�
�� �����%%���������� �������%%�
�����%%����"#$�%%�� !��������
%%%%%%%%%%%(+1.30,4518%%%()*+,-,.,)/%,0+1//,210.18%%%(,08%%%%%%(:*1-,H8%%%%(+*)06/)+18%%

Fig. 1. Lattice produced from an unsegmented string

In this paper, we propose a new statistical model for Thai morphological anal-
ysis that jointly tackles word segmentation, POS tagging, and unknown word
problems. Our assumption is that the system could analyze a given string accu-
rately (both known and unknown words), if the search space contains reasonably
potential word hypotheses. Such space can be generated by using the so-called
two-pass search algorithm. In the first pass, we use a dictionary and writing rules
to build an initial lattice for a string input. We then identify suspicious word
hypotheses in the lattice and expand new word hypotheses from all possible
substrings within uncertainty ranges. Finally, in the second pass, we search the
optimal path in the expanded search space by applying a lattice-based Viterbi
algorithm. Experimental results show that the two-pass search algorithm im-
proves the performance of the standard search by 3.23 F1 in word segmentation
and 2.92 F1 in the combination of word segmentation and POS tagging.

2 Framework for Thai Morphological Analysis

2.1 Problem Formulation

We formulate the problem of Thai morphological analysis on word lattice rep-
resentation. A lattice is an ordered graph that efficiently represents rich in-
formation about sequences of word hypotheses. Nodes in the graph are word
hypotheses with their morphological information (e.g., POS tags and character
types), and arcs are transitions between word hypotheses.

Given an unsegmented string, the lattice is produced by expanding possible
word hypotheses from left to right. If a sequence of characters can be matched
with a word surface in the system dictionary, word hypotheses are then generated
corresponding to lexical entries. If no word can be found in the system dictionary,
Thai writing rules are applied to generate character clusters. These character
clusters are assigned with a set of open-class POS tags (e.g., noun and verb) to
be candidate word hypotheses.

Based on word lattice representation, we define the process of Thai morpho-
logical analysis as a search problem by the following equation:

y∗ = argmaxy∈Y(x)p(y|x) = argmaxy∈Y(x)p(y) , (1)

where x is a character sequence c1c2. . .c|x|, y is a sequence of word hypotheses,
and Y(x) is a lattice containing a set of whole-sentence analyses for x. Note that

82 Kruengkrai C. and Isahara H.

we can drop x in the last step, since it is a fixed character sequence and does
not affect the argmax. Our objective is to search the most likely path y∗ in the
lattice Y(x).

2.2 Discriminative Learning

In our model, we apply discriminative learning to estimate model parameters.
The idea is to learn how to discriminate the correct path from other candidate
paths with features. This is in contrast to most previous research for Thai mor-
phological analysis, which estimates model parameters using only the correct
path in a given training corpus. Discriminate learning estimates model param-
eters based on the search space that the system will expect to see in practice.
Our problem formulation can be advantageously used for discriminative learning,
since the search space is formed in the word lattice. Both learning and decoding
are processed in the same problem structure.

We now factorize the probability p(y) further by using an instance of the
log-linear models with bigram features [7]. Thus, we obtain:

p(y) =
1
Z

exp
{ #y∑

t=1

K∑
k=1

λkfk(yt−1, yt)
}

, (2)

where #y is a number of word hypotheses in a path y which varies among
candidate paths, fk is a feature operated on bigram transition between yt−1 and
yt, λk is a parameter to be estimated. To ensure that

∑
y∈Y(x) p(y) = 1, the

normalization factor Z is given by:

Z =
∑

y′∈Y(x)

exp
{ #y′∑

t=1

K∑
k=1

λkfk(y′
t−1, y

′
t)

}
, (3)

which is a sum over all paths y′ in the lattice.
In learning, given a set of training data D = {y(i)}N

i=1 where N is the number
of all training samples, we need to find a set of feature weights λ. We use a
penalized log-likelihood maximization, in which the objective function defines:

log p(λ|D) =
N∑

i=1

log pλ(y(i)) −
K∑

k=1

λ2
k

2σ2
. (4)

One can use a numerical method for unconstrained optimization to solve
Equation 4. In our implementation, we apply the L-BFGS algorithm [8], which
is known to be a very efficient optimization method used in large NLP tasks.

To summarize, the system learns the model parameters by representing whole
training samples with lattices, and extracting the global feature space. It then
iterates on each lattice to estimate feature weights using the Viterbi-style algo-
rithm (explained in the next section). The system tries to discriminate the cor-
rect path from incorrect paths using the current estimation of feature weights,

A Two-Pass Search Algorithm for Thai Morphological Analysis 83

and computes the expectation of feature weights based on resulting errors. The
system proceeds until it converges to a point where the change of the objective
function is less than a given threshold.

2.3 Decoding

In decoding, we need to find the most likely path such that y∗ = argmaxy∈Y(x)p(y).
To avoid an exponential-time search over all candidate paths in the lattice Y(x),
we thus adapt the Viterbi algorithm to the lattice structure. Let L(y) be a set of
nodes that connect to node y from the left. The Viterbi algorithm stores a partial
probability δ of the most likely path reaching node y, which can be expressed in
a recursive form:

δy = max
y′∈L(y)

[
δy′ exp

(K∑
k=1

λkfk(y′, y)
)]

. (5)

The partial best path is one that achieves the maximal probability. The
recursion terminates at the end of string (eos):

φ∗
yeos

= argmaxy′∈L(yeos)δy′ . (6)

Finally, we can backtrack through the lattice with the back pointer φ to
recover the global best path y∗.

3 Two-Pass Search Algorithm

As mentioned earlier, in practice, the search space is not complete like in learn-
ing where all words are known. Some word hypotheses are missing due to the
unknown word problem. There are two possible approaches to handle this issue:
increasing the coverage of the system dictionary, or using a model that can pro-
cess unknown words. In this paper, we are interested in the latter approach. Our
goal is to recover missing word hypotheses based on the learned model. Here
we design the two-pass search algorithm that finds the most likely path in the
expanded search space.

The two-pass search algorithm computes the marginal probability of each
node in the lattice, which reflects the uncertainty of that node. Nodes that have
their probabilities less than a given a threshold, denoted by ε, are considered as
suspicious nodes. Thus, we can identify uncertainty ranges in the input string
that might contain parts of known or unknown words depended on their prob-
abilities. We generate all possible substrings (sequences of character clusters)
within uncertainty ranges, and expand nodes in the lattice according to these
substrings. We then search the most likely path in the new lattice that contains
much better coverage of word hypotheses. Algorithm 1 provides an outline of
the two-pass search algorithm.

84 Kruengkrai C. and Isahara H.

Algorithm 1: Two-Pass Search Algorithm

input : An unsegmented string x.

output : The most likely path y∗ = y1, . . . , y#y .

• (1-pass) Build an initial lattice Y(x), and estimate the probability py of each
node y in the lattice using Equations 7, 8 and 9.

• Find nodes that py < ε or node-state = UNK, and mark their surface lengths.
• Generate all possible substrings within uncertainty ranges, and expand new nodes

in Y(x) according to these substrings.
• (2-pass) Perform the Viterbi search to get y∗ using Equations 5 and 6.

Let αy be a forward probability and βy be a backward probability reach-
ing node y from the left and right, respectively. The marginal probability of a
particular node y can be calculated by:

py =
αy · βy

Z
, (7)

where

αy =
∑

y′∈L(y)

[
αy′ exp

(K∑
k=1

λkfk(y′, y)
)]

, (8)

βy =
∑

y′∈R(y)

[
βy′ exp

(K∑
k=1

λkfk(y, y′)
)]

. (9)

Note that the forward and backward probabilities are calculated with recursion
similar to the Viterbi algorithm, except using sum function instead of max func-
tion. We can apply the Forward-Backward algorithm to obtain py for a given
node y.

Let us describe the two-pass search algorithm more clearly with a motivating
example. Recall the lattice in Figure 1, and suppose that the word ‘technique’
does not appear in the system dictionary. The system tries to build a lattice
where the predicted path now contains both known and unknown nodes (Figure
2(a)). This situation often occurs in practice, when a word hypothesis is missing
and the system searches the most likely path based on available information. If
we stop at this point, we obtain an incorrect segmentation.

When the two-pass search algorithm is performed, the probability of each
node in the lattice is calculated (Figure 2(b)). Note that nodes tagged with
UNK show a list of probabilities, since they represent a number of candidate
word hypotheses actually tagged with open-class POS tags. In this example,
four tags are assigned, including NCMN, NPRP, VACT and VATT. The al-
gorithm identifies the suspicious nodes that their probabilities are less than a
threshold ε = 0.8, and then all possible substrings within the uncertainty range
are generated (Figure 2(c)). Finally, the algorithm can recover the correct path
in the new search space (Figure 2(d)).

A Two-Pass Search Algorithm for Thai Morphological Analysis 85

Israel
Rectangle

Israel
Line

���

��������� ������ ������� �������

�
�����

������� ���	
!��������

����"#$�

����� �����

�� !��������

9��
&'�����

&'�����
���������� �������

�� �����
����	
����	 ����	

��	
��%&'%(:75*8 ����	
�

����	

(a) Lattice when a word hypothesis is missing

���

��������� ������ ������� �������

�
�����

������� ���	
!��������

����"#$�

����� �����

�� !��������

9��
&'�����

&'�����
���������� �������

�� �����
����	
����	 ����	

����	

50.1*+),0+;%*)021�(��<%=>?8

=>@AB
=>@B?
=>C=D
=>E@=

=>@BA
=>@?C
=>CFC
=>=AD

=>CFF
=>EAE
=>FEE
=>=DF=>C@F

=>GBG

=>=D?

=>AF@

=>=D?

E>===

=>=== =>===

=>?F=

=>EG=

=>?@B

=>==G =>===

=>=B=

=>EBC

(b) The suspicious node indicated by the dashed line box are identified, and the un-
certainty range which has no potential nodes in the paths is located

���

��������� ������ ������� �������

�
�����

������� ���	
!��������

����"#$�

����� �����

�� !��������

9��

���������� �������
�� �����

����	
&'%%%%%%%%�%%%%%%
%� %%%%�

&'�%%%%%%�
%� %%%%
��

&'�
%� %%%�
��

&'�
��

>%>%> >%>%>

(c) Possible substrings are generated within the uncertainty range

���

������ ������� �������

�
�����

������� ���	
!��������

����"#$�

����� �����

�� !��������

�� �����

����	

����	
����	
&'����	 �
����	
�� ���	
&'�
����	 �
�� ���	

9��
&'�
�� �����

&'�
�� �����

���������� �������

���������

=>G@?

=>=?@

=>=ED
=>=E@
=>=GC

����	&'���	

(d) Lattice with new candidate word hypotheses. The correct path can be recoverd in
the expanded search space

Fig. 2. Examples show how the two-pass search algorithm proceeds

86 Kruengkrai C. and Isahara H.

4 Experiments

4.1 Experimental Settings

We conducted our experiments on ORCHID corpus, which is a Thai part-of-
speech tagged corpus [9]. The original texts were taken from technical papers
published in the proceedings of the National Electronics and Computer Tech-
nology Center (NECTEC) annual conference. ORCHID has been known to be
a hard dataset for evaluation, since it consists of a large number of unknown
words. In experiments, we divided the corpus into the training and test sets
according to Table 1. We converted all spacial tags for punctuation to original
forms, e.g. , <colon> → ‘:’. We also merged space tokens to their next tokens,
and considered them as leading spaces of words. The system dictionary was gen-
erated from unique tokens occurred in the training set and TCL’s computational
lexicon [5].

Table 1. Details of dataset used in our experiments

corpus ORCHID
POS tags 15 categories and 48 subcategories
of training samples 9,234 (papers published in ’89-’90)
of training tokens 116,102
of test samples 5,808 (papers published in ’91)
of test tokens 71,097
of known test tokens 57,381
of unknown test tokens 9,403 (not include punctuation)
of entries in the system dictionary 55,791
of features 2,203,932

Since our problem formulation is based on a log-linear model, a variety of
features can be incorporated in the model. Table 2 provides the details of features
used in our experiments. We broadly classified character types into 6 categories,
including symbol, alphabet, number, ordinal number, Thai and other character
types. Note that a word wi is considered to be a rare word, if it occurs less than
2 times in the training set.

For the propose of comparison, we used the maximal matching algorithm for
word segmentation and the unigram baseline method for POS tagging. The idea
of the unigram baseline method is to assign each token with the most likely POS
tag that can be estimated from the frequency count in the training set [4]. For
word segmentation, precision is defined as the percentage of tokens recovered by
the system that also occurred in the test set, while recall is defined as the per-
centage of tokens in the test set recovered by the system. For full morphological
analysis (word segmentation and POS tagging), a token is considered to be a
correct one only when both the word boundary and its POS tags are correctly
identified. The following metrics are used to evaluate the performance.

A Two-Pass Search Algorithm for Thai Morphological Analysis 87

Table 2. Features are based on three-level, first-order Markov assumption. Each node
y contains morphological information of word surface w, POS p and sub-POS p′. fk(·)
is operated on yt−1 → yt

Unigram Feature

condition feature template

∀yt 〈pt〉
〈pt, p

′
t〉

character type of wt × {φ, 〈pt〉, 〈pt, p
′
t〉}

wt is not rare wt × {φ, 〈pt〉, 〈pt, p
′
t〉}

wt is rare up to 2 prefixes of wt × {φ, 〈pt〉, 〈pt, p
′
t〉}

up to 2 suffixes of wt × {φ, 〈pt〉, 〈pt, p
′
t〉}

Bigram Feature

condition feature template

∀yt−1 → yt 〈wt−1, wt〉
(if wt is rare, replace 〈pt−1, pt〉
its surface with a 〈wt−1, wt, pt〉
symbol ‘∗’) 〈wt−1, pt−1, wt〉

〈pt−1, pt, p
′
t〉

〈pt−1, p
′
t−1, pt〉

〈wt−1, pt−1, pt〉
〈pt−1, wt, pt〉
〈wt−1, pt−1, wt, pt〉
〈wt−1, pt−1, pt, p

′
t〉

〈pt−1, p
′
t−1, wt, pt〉

〈pt−1, p
′
t−1, pt, p

′
t〉

〈wt−1, wt, pt, p
′
t〉

〈wt−1, pt−1, p
′
t−1, wt〉

〈wt−1, pt−1, p
′
t−1, wt, pt, p

′
t〉

Recall =
of correct tokens

of tokens in the test set

Precision =
of correct tokens

of tokens recovered by the system

F1 =
2 · Recall · Precision
Recall + Precision

Recallknown =
of correct known tokens

of known tokens in the test set

Recallunknown =
of correct unknown tokens

of unknown tokens in the test set

4.2 Results

Tables 3 and 4 show the performance of the two-pass search algorithm by varying
the probability threshold ε in the range of [0.5, 0.8]. The probability threshold

88 Kruengkrai C. and Isahara H.

Table 3. Results of word segmentation

Algorithm Recall Precision F1 Recallknown Recallunknown

Baseline 65.80(46780
71097

) 66.56(46780
70284

) 66.18 68.19(39127
57381

) 50.32(4732
9403

)

Standard Search 83.47(59345
71097

) 78.24(59345
75851

) 80.77 88.29(50663
57381

) 58.76(5525
9403

)

Two-Passε=0.5 85.15(60541
71097

) 82.87(60541
73051

) 84.00 89.35(51272
57381

) 58.78(5527
9403

)

Two-Passε=0.6 84.69(60213
71097

) 82.72(60213
72795

) 83.69 88.79(50949
57381

) 58.83(5532
9403

)

Two-Passε=0.7 84.08(59777
71097

) 82.54(59777
72418

) 83.30 88.00(50493
57381

) 59.13(5560
9403

)

Two-Passε=0.8 82.84(58894
71097

) 82.03(58894
71799

) 82.43 86.47(49616
57381

) 59.16(5563
9403

)

Table 4. Results of word segmentation and POS tagging

Algorithm Recall Precision F1 Recallknown Recallunknown

Baseline 57.58(40940
71097

) 58.25(40940
70284

) 57.91 61.19(35109
57381

) 31.28(2941
9403

)

Standard Search 77.57(55149
71097

) 72.71(55149
75851

) 75.06 82.46(47314
57381

) 50.14(4715
9403

)

Two-Passε=0.5 79.05(56202
71097

) 76.94(56202
73051

) 77.98 83.20(47741
57381

) 50.51(4749
9403

)

Two-Passε=0.6 78.63(55901
71097

) 76.79(55901
72795

) 77.70 82.66(47434
57381

) 50.66(4764
9403

)

Two-Passε=0.7 78.08(55515
71097

) 76.66(55515
72418

) 77.36 81.97(47033
57381

) 50.90(4786
9403

)

Two-Passε=0.8 76.98(54729
71097

) 76.23(54729
71799

) 76.60 80.60(46251
57381

) 50.95(4791
9403

)

ε is used for identifying suspicious nodes. The baseline method cannot produce
acceptable results. These results indicate how difficult the morphological analysis
in ORCHID corpus is. The standard search which performs a single-pass Viterbi
search can boost the performance with a reasonable gap. The best performance
(except Recallunknown) can be obtained by using the two-pass search algorithm
with ε = 0.5. The two-pass search algorithm improves the performance of the
standard search by 3.23 F1 in word segmentation and 2.92 F1 in the combination
of word segmentation and POS tagging. The two-pass search algorithm yields
the best Recallunknown with ε = 0.8. The more the value of ε is set, the more
the suspicious nodes are identified. The new word hypotheses are subsequently
generated, which in turn increase noises. In practice, the optimal value of ε can
be selected by cross-validation.

In Table 5, we consider the effect of ‘prefix & suffix’ and ‘character type’
features in morphological analysis. We use the two-pass search algorithm with
ε = 0.5 and perform experiments without each feature. By removing ‘prefix &
suffix’ feature, the performance decreases obviously. However, the contribution
of character type feature is not significant as we expected. Without it, the per-
formance improves slightly.

4.3 Error Analysis

From overall results, we observe that there are two major cases, which the two-
pass search algorithm could not analyze the input strings correctly. The first

A Two-Pass Search Algorithm for Thai Morphological Analysis 89

Table 5. Results without each feature produced by Two-Passε=0.5

Feature F Level Recall Precision F1 Recallknown Recallunknown

F\{prefix & suffix} word 83.49 81.77 82.62 88.44 58.32
(-1.66) (-1.10) (-1.38) (-0.91) (-0.46)

word & POS 77.55 75.95 76.74 82.48 50.10
(-1.50) (-0.99) (-1.24) (-0.72) (-0.41)

F\{character type} word 85.41 82.82 84.10 89.73 58.69
(+0.26) (-0.05) (+0.10) (+0.38) (-0.09)

word & POS 79.40 76.99 78.18 83.66 50.60
(+0.35) (+0.05) (+0.2) (+0.46) (+0.09)

case is when unknown words are mixed with various character types. Since OR-
CHID corpus was derived from technical papers, the number of technical terms
and jargons is relatively high. For example, the surface ‘Gao.65AI035AS’ is seg-
mented into smaller tokens, ‘Gao’, ‘.’, ‘65’, ‘AI’, ‘035’ and ‘AS’, according to
their character types. In this case, it is not difficult to resolve, because we can
use some regular expressions to detect domain-specific word surfaces. The sec-
ond case which makes Thai morphological analysis much more difficult is when
unknown words are formed from known words, and each of them is otherwise
found independently in the corpus. This case can be thought of as the problem
of compound words. To deal with the problem, we need to find a set of features
that can capture the compounding process.

5 Related Work

A wide variety of statistical corpus-based approaches has been applied to Thai
morphological analysis. Jaruskulchai [3] used a model selection technique called
minimum description length to estimate how likely a sequence of syllables can
form a word. Aroonmanakun [1] exploited statistics of collocation to merge syl-
lables to a word. These approaches are only focused on word segmentation,
and hard to integrate POS tagging into their frameworks due to the limitation
of problem formulation. Charoenpornsawat et at. [2] applied the Winnow al-
gorithm to learn contextual features for handling the unknown word problem.
Recently, Kruengkrai et al. [6] have proposed a unified framework for Thai mor-
phological analysis based on conditional random fields (CRFs). Their approach
uses a linear-chain formulation and produces a lattice using n-best word/tag
sequences, while our approach uses a general graphical model (i.e., an instance
of Markov random fields) and directly generates a lattice from a string input.

Discriminative models have been applied to morphological analysis in other
non-segmenting languages. Uchimoto et al. [10] proposed a Japanese morpheme
model that estimates probabilities of every substring for a given sentence based
on maximum entropy. Kudo et al. [7] proposed a CRF-based training method
that can avoid the label and length bias problems in Japanese morphological

90 Kruengkrai C. and Isahara H.

analysis. Our approach can also avoid those problems due to performing whole-
sequence normalization.

6 Conclusion

We have presented a discriminative learning approach for Thai morphological
analysis. We consider Thai morphological analysis as a search problem. We pro-
pose the two-pass search algorithm that finds the most likely path in the ex-
panded search space. The objective of our algorithm is to increase the coverage
of word hypotheses based on probability estimation in the lattice. The experi-
mental results on ORCHID corpus show that the two-pass search algorithm can
improve the performance over the standard search approach.

References

1. Aroonmanakun, W.: Collocation and Thai Word Segmentation. Proc. of the
5th SNLP & 5th Oriental COCOSDA Workshop. (2002) 68–75

2. Charoenpornsawat, P.: Feature-based Thai Word Segmentation. Master’s The-
sis, Computer Engineering, Chulalongkorn University. (1999)

3. Jaruskulchai, C.: An Automatic Thai Lexical Acquisition from Text. Proc. of
PRICAI. (1998) 289–296

4. Jurafsky, D., Martin, J. H.: Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Prentice-Hall, Inc. (2000)

5. Kruengkrai, C., Charoenporn, T., Sornlertlamvanich, V., Isahara, H.: Acquiring
Selectional Preferences in a Thai Lexical Database. Proc. of IJCNLP. (2004)

6. Kruengkrai, C., Sornlertlamvanich, V., Isahara, H.: A Conditional Random
Field Framework for Thai Morphological Analysis. Proceedings of the Fifth
International Conference on Language Resources and Evaluation. (2006)

7. Kudo, T., Yamamoto, K., and Matsumoto, Y.: Applying Conditional Random
Fields to Japanese Morphological Analysis. Proc. of EMNLP. (2004)

8. Liu, D. C., Nocedal, J.: On the limited memory BFGS method for large scale
optimization. Math. Programming. (1989) 45:503–528

9. Sornlertlamvanich, V., Charoenporn, T., Isahara, H.: ORCHID: Thai Part-Of-
Speech Tagged Corpus. Technical Report TR-NECTEC-1997-001, NECTEC.
(1997)

10. Uchimoto, K., Nobata, C., Yamada, A., Sekine, S., Isahara, H.: Morphological
Analysis of a Large Spontaneous Speech Corpus in Japanese. Proc. of ACL.
(2003)

A Two-Pass Search Algorithm for Thai Morphological Analysis 91

	Vol-33-part2.pdf

