
Collins-LA: Collins’ Head-Driven Model  
with Latent Annotation 

Seung-Hoon Na1 , Meixun Jin1, In-Su Kang2 and Jong-Hyeok Lee1 
 

1 Pohang University of Science and Technology (POSTECH), AITrc, Republic of Korea 
{nsh1979,meixunj,jhlee}@postech.ac.kr, 

2 Korea Institute of Science and Technology Information (KISTI), Republic of Korea 
dbaisk@kisti.re.kr 

Abstract. Recent works on parsing have reported that the lexicalization does 
not have a serious role for parsing accuracy. Latent-annotation methods such as 
PCFG-LA are one of the most promising un-lexicalized approaches, and 
reached the-state-of-art performance. However, most works on latent annotation 
have investigated only PCFG formalism, without considering the Collins’ popu-
lar head-driven model, though it is a significantly important and interesting is-
sue. To this end, this paper develops Collins-LA, the extension of the Collins’ 
head-driven model to support the latent annotation. We report its basic accuracy, 
comparing with PCFG-LA. The experimental results show that Collins-LA has 
potential to improve basic parsing accuracy, resulting in comparable perform-
ance with PCFG-LA even in the naive setting.  

1   Introduction 

Recent works for parsing have consistently shown that the lexicalization does not 
have serious effects on parsing accuracy. Gildea mentioned that the high performance 
of a Collins’ model is obtained not from the bi-lexical dependency, showing that 
parsing accuracy is not decreased even when the bi-lexical dependency is not incorpo-
rated to the model [1]. Gildea’s result has been re-confirmed by Bikel, during his 
investigation through the re-implementation of the Collins’ parsing model [2].  

Another direction is opened from a Klein’s work, where fully un-lexicalized pars-
ing models are extensively evaluated through an accurate design of tree-bank annota-
tion [3]. Klein’s work includes Johnson’s parent annotation [4], and external-internal 
annotation, tag-splitting, and head annotation, etc, resulting in the parsing accuracy of 
about 86%, which corresponds to the initial performance of the lexicalized parsing 
accuracy. Motivated from this, Matsuzaki proposed a new generative model PCFG-
LA, an extension of PCFG models in which non-terminal symbols are annotated with 
latent variables [5]. PCFG-LA successfully replaces the manual feature selection used 
in previous research such as Johnson’s work or Klein’s work, by showing that PCFG-
LA reaches Klein’s result. Based on this, Petrov et al. further explored PCFG-LA 
where hierarchical splitting and merging of latent non-terminals are utilized, thus 
differentiating the number of latent variables of each non-terminal symbol [6]. Their 
result is remarkable, showing about 90% accuracy, which is almost comparable to 
the-state-of-art of Charniak’s parser [7]. All these previous results consistently show 

© A. Gelbukh (Ed.)
Advances in Natural Language Processing and Applications
Research in Computing Science 33, 2008, pp. 43-54

Received 15/10/07
Accepted 07/12/07

Final Version 19/01/08



that the annotation-based parsing strategy, especially the recently developed auto-
matic annotation, is a promising approach which can adequately balance between the 
naiveness of the original parsing model and the sparseness problem of the compli-
cated lexicalized model.  

However, most previous works on the annotation are restricted to PCFG, without 
investigating other probabilistic parsing models such as a head-driven model, etc. Of 
course, PCFG has many advantages such as simplicity and clearness to be applied to 
the parsing problem, but there are many other parsing models which are known as 
the-state-of-art methods. In this regard, this paper investigates the extension of the 
popular Collins’ head-driven model [8] with the latent annotation, namely Collins-LA. 
The Collins’ model deserves to be extended with the latent annotation for following 
reasons. 1) Collins’ model is one of the-state-of-art approaches for parsing, as well as 
the Charniak’s model. 2) Gildea’s observation that bi-lexicalization does not play a 
serous role in the high performance of parsing is revisited through Collins’ head-
driven parsing model. 3) Previous works on PCFG have adopted the Collins’ head-
driven idea when binarizing production rules collected from the tree-bank, by using 
head-driven binarization according to the head-modifier generation principle (e.g. 
Matsuzaki’s center-head and center-parent binarization, Petrov’s x-bar binarization). 
Although their usage of the head-driven approach is limited to the style of merely 
applying the head-modifier rule, not incorporated with the parsing model, the head-
driven idea has been widely accepted in the parsing community.   

Our goal is to examine whether or not the Collins’ model is accepted even for the 
un-lexicalized model. To this end, we formulate a generation model based on Collin-
LA, and derive an EM training algorithm to estimate Collins-LA. To cover the spe-
cialized generation for BaseNP, we derive a new EM algorithm using the inside-
outside algorithm embedding a forward-backward algorithm, and evaluate it on the 
standard Penn tree-bank data set. Experimental results show that Collins-LA margin-
ally improves the original Collins’ model, and is comparable to Matsuzaki’s PCFG-
LA. This result is notable in that the Collins’ head-driven model works well even 
within the extension of latent annotation. Further, it implies that the work on the latent 
annotation should be further separately investigated for other grammars.  

Relating to our work, Prescher proposed Head-LA, the latent annotation frame-
work of a head-driven model [9]. However, Prescher’s work refers to Charniak’s 
head-driven parsing model [10], not to Collins’ parsing model. Collins’ head-driven 
model is different from Chaniak’s one, since Chaniak’s model involves the produc-
tion rule within the generative model, while Collins’ model does not include the pro-
duction rule itself. Therefore, Prescher’s head-LA cannot be directly applied to 
Collins’ head-driven model, thus we require a new separate algorithm to support the 
latent annotation for Collins’ model.  

This paper is organized as follows. First, Section 2 briefly mentions Collins’ head-
driven model. Section 3 examines the proposed Collins-LA, and a EM algorithm to 
train it. Section 4 further extends Collins-LA for dealing with a specialized process of 
BaseNP, and drives a novel EM algorithm where a forward-backward algorithm is 
embedded to the inside-outside algorithm. Section 5 presents experimental results. 
Finally, the conclusion will be given in Section 6.  

44   Seung-Hoon N., Meixun J., In-Su K. and Jong-Hyeok L. 



2   Un-lexicalized Collins’ Head-Driven Model 

In the principle of Collins’ model, the head node is first generated for a given parent 
node, and other modifier nodes are generated from the head node and the parent node. 
Formally, suppose that the production rule is given by r as follows.  

 MN RHRLLPr ΛΛ 11: →   

, where H indicates the head-node of parent node P and, Li and Rj are left and right 
child nodes. The generation of Collins’ model consists of two separated processes [8]: 
1) generation of head-node H from the given parent node P, 2) generation of left and 
right child nodes Li or Rj from parent-node P and head-node H. This is formulated as 
follows.  

 ∏∏=
j

j
i

i HPRPHPLPPHPrP ),|(),|()|()(  (1) 

However, in this setting, the generation process will not be stopped, and would pre-
fer the production rule with a less number of child nodes. Collins introduced STOP 
node, indicating the stop event on head-modifier generations, and defined the follow-
ing model.  

 
),|(),|(

),|(),|()|()(

HPSTOPPHPSTOPP

HPRPHPLPPHPrP

RL

j
j

i
i ∏∏=

 
(2) 

where PL(STOP|P,H) and PR(STOP|P,H) indicate the probability that generates STOP 
event for the left-child part and the right-child part, respectively. This STOP-added 
model can partially deal with the preference to production rule with the small number 
of child nodes. In fact, when LN+1 and RM+1 are inserted to the rule r as a STOP sym-
bol, Eq. (2) is equivalent to Eq. (1). Summing up, Collins’ model consists of the fol-
lowing four types of probabilities.  
1) Head generation: P(H|P) 
2) Left modifier generation: P(Li|P,H) 
3) Right modifier generation: P(Rj|P,H) 
4) Lexical generation: P(w|H) 

For a given parse tree T, the generation probability of T is formulated as follows:  
 ∏

∈

=
Tr

TrcrPTP );()()(  (3) 

where c(r;T) is the number of counts that applies the rule r in tree T. Parsing is the 
work to find the best parse tree that maximizes the above generation probability P(T).  
The above model is the un-lexicalized version of Collins’ head-driven. The final ver-
sion of Collin’s model is fully lexicalized where the head-word and the head-tag are 
annotated to each non-terminal node in the original tree T, using the same head-
modifier generation principle.  

Collins-LA: Collins’ Head-Driven Model  with Latent Annotation   45



3  Latent Annotation of Collin’s Head-Driven Model  

3.1  Brief Background on Tree-Bank Annotation Approaches 

Annotation-driven approaches do not use a given tree-bank directly. Instead, it con-
verts the tree-bank into the annotated one by annotating non-terminal symbols with 
another non-terminal symbol in the tree or an automatically generated symbol. In fact, 
lexicalization used in the head-driven model belongs to annotation-driven approaches, 
where the head word and the head tag are attached to each non-terminal node.  
The initial work for the annotation is Johnson’s parent annotation, where a non-
terminal node is annotated with the symbol of its parent node [4]. In spite of the sim-
plicity of Johnson’s annotation, PCFG using the annotated tree-bank reaches about 
79% parsing accuracy which significantly improves the baseline of 72%. Klein’s 
work further explored Johnson’s annotation scheme, by investigating various annota-
tion schemes such as tag split, attachment of pre-nonterminal and BaseNP, reaching 
the parsing accuracy of about 86% [4]. However, Johnson’s and Klein’s works ap-
plied manually designed annotation, i.e. considering “which non-terminal symbol of 
nodes should be split?", and “how the symbol should be annotated with another sym-
bol?”. To avoid the manual design of annotation, Matsuzaki et al. [5] and Petrov et al. 
[6] applied the latent annotation where such considerations are automatically decided.  

3.2  Collins-LA: Latent Extension of Collins Model  

This study extends the original Collins’ model to Collins-LA by annotating latent 
variables to non-terminal symbols. Let k be the number of latent variables. For given 
non-terminal symbol P, there are k possible latent variables for P - P[1], …, P[L]. 
Given parse tree T, φ(T) is a latent-annotated tree obtained from T where each non-
terminal node is mapped to one of latent variables. Then, we define the generation 
probability of φ(T) as follows.  

 ∏
∈

=
)(

))(;()())((
Tr

TrcrPTP
φ

φφ  (4) 

The production rule r for generating φ(T) takes the following form.  

 111111 ][][][][][][: ++→ MNMNNN RwRwRyHzLzLLxPr ΛΛ  (5) 

where x, y, zi and wj correspond to the index numbers used for latent variables in φ(T): 
P, H, Li, and Rj, respectively. LN+1 and RM+1 indicates STOP symbols.  
From the totality law of the probability, P(T) is obtained from the summation of gen-

erative probabilities of all latent-annotated trees as follows.  
 ∑

Φ∈

=
)()(

))(()(
TT

TPTP
ϕ

ϕ  (6) 

where Φ(T) is the set of all possible latent annotated trees which can be obtained from 
T. |Φ(T)| is the number of the set, which follows the exponential function of the num-

46   Seung-Hoon N., Meixun J., In-Su K. and Jong-Hyeok L. 



ber of non-terminal nodes in T. Similar to the original Collins’ model, we should 
estimate the following four types of probabilities. 
1) Head generation: P(H[y]|P[x]) 
2) Left modifier: P(Li[z]|P[x],H[y]) 
3) Right modifier: P(Rj[z]|P[x],H[y]) 
4) Lexical generation: P(w|H[x]) 
where x, y, and z are the index numbers of latent variables – P, H and Li (or Rj) 

3.3  EM Training Algorithm  

Given the training set of parse trees Train = {T1, T2, …, TU}, we derive an EM-
training algorithm similar to the inside-outside algorithm to estimate the above four 
types of probabilities for Collins-LA.  

Let β(P[x]) be the inside-probability which generates the sub-tree with P as a root 
node, providing that P is assigned to the latent index number x. Then, β(P[x]) can be 
defined according to the following three different cases.  

1) P is a pre-nonterminal node that contains wi as a unique child word.   

 ])[|(])[( xPwPxP i=β  (7) 

2) For the stop symbol STOP, β(STOP[z]) is 1.0.  
3) Otherwise, let H be the head child node of P, and Li and Rj be i-th left modi-

fier and j-th right modifier, respectively. Then, β(P[x]) is recursively de-
fined as follows. 

 
∏∏

∑=

j

j
Right

i

i
Left

y

yHxPyHxP

yHxPyHPxP

])[],[(])[],[(

])[(])[|][(])[(

γγ

ββ
 

(8) 

where γLeft
i(P[x],H[y]) is the probability that generates the sub-tree with Li as a root 

node (including the generation of Li) as follows.  
 ∑=

z
ii

i
Left zLyHxPzLPyHxP ])[(])[],[|][(])[],[( βγ  (9) 

Note that γLeft
i(P[x],H[y]) contains the generation probability for sub-trees with 

roots as Li[1] … Li[k] of each latent node for node Li, thus it is independent to the 
index number of the latent variable. Similar to γLeft

i(P[x],H[y]), γRighj
i(P[x],H[y]) is 

defined as the probability that generates the sub-tree with Rj as a root node, for given 
P[x] and H[y] (including the generation of the root node Rj).  

 ∑=
z

jij
j

Right zRyHxPzRPyHxP ])[(])[],[|][(])[],[( βγ  (10) 

Let α(P[x]) be the outside probability that generates all other sub-trees in T, except 
for the generation of the subtree of P[x] (but including the generation of P[x]). For 
parent node P, let α(H[y]), α(Li[z]) and α(Rj[z]) be outside probabilities of the head-
node H, and child nodes Li and Rj, respectively. Then, all these outside probabilities 
are recursively defined using α(P[x]), in a style of the top-down form.  

Collins-LA: Collins’ Head-Driven Model  with Latent Annotation   47



 
∏∏

∑=

j

j
Right

i

i
Left

x

yHxPyHxP

xPyHPxPyH

])[],[(])[],[(

])[|][(])[(])[(

γγ

αα
 

(11) 

For i-th left child node Li,  

 

∏∏

∑∑

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

≠ j

j
Right

ik

k
Lefti

x y
i

yHxPyHxPyHxPzLP

yHxPyHPxPzL

])[],[(])[],[(])[],[|][(

])[(])[|][(])[(])[(

γγ

βαα
 

(12) 

For j-th right child node Rj,  

 

∏∏

∑∑

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

≠ j

j
Right

ik

k
Leftj

x y
j

yHxPyHxPyHxPzRP

yHxPyHPxPzR

])[],[(])[],[(])[],[|][(

])[(])[|][(])[(])[(

γγ

βαα
 

(13) 

Based on inside and outside probabilities of α(P[x]) and β(P[x]), the Expectation step 
in EM algorithm calculates the expected count of events which correspond to four 
type of rules.  

 ])[|(])[()|],[( xPwPxPTwxPc α∝  (14) 

 
∏∏

∝

j

j
Right

i

i
Left yHxPyHxP

yHxPyHPxPTyHxPc
])[],[(])[],[(

])[(])[|][(])[()|][],[(
γγ

βα
 

 

 

])[(])[],[|][(

])[],[(])[],[(

])[(])[|][(])[()|][],[],[(

zLyHxPzLP

yHxPyHxP

yHxPyHPxPTzLyHxPc

ii

j

j
Right

ik

k
Left

i

β

γγ

βα

∏∏
≠

∝
 

 

(Parse tree T should be inserted as a conditional term in the right-hand part in Eq. (14), 
but we skip.) Now in the Maximization step, the four types of probabilities which we 
pursue are calculated as follows, using the above expected counts.  

 ∑
∈

∝
TrainT

TwxPcTPxPwP )|],[()(])[|(  (15) 

 ∑
∈

∝
TrainT

TyHxPcTPxPyHP )|][],[()(])[|][(   

 ∑
∈

∝
TrainT

ii TzLyHxPcTPyHxPzLP )|][],[],[()(])[],[|][(   

48   Seung-Hoon N., Meixun J., In-Su K. and Jong-Hyeok L. 



where Train is the training set of parse trees in a tree-bank. P(T) can be rewritten by 
using these inside and outside probabilities.  

 ∑=
z

TzXTzXTP )|][()|][()( βα  (16) 

where X is a non-terminal symbol in parse tree T.  

3.4  Decoding  

The decoding problem (i.e. parsing problem) is to find the best parse tree that maxi-
mizes P(T). However, the exact decoding problem is NP-complete [5]. Instead, we 
adopted n-best re-ranking strategy, which is one of the approximation methods taken 
by Matsuzaki et al [5]. In n-best re-ranking, we first generate top n candidate parse 
trees using a non-latent original parsing model (PCFG or other probabilistic grammar), 
and then re-rank them according to the generation probabilities P(T) from Collins-LA.  

4  Further Extension for BaseNP Generation  

4.1 Specialized Generation Model for BaseNP 

BaseNP is a non-recursive noun phrase which does not contain any other noun 
phrases as its descendents. Due to a linguistic reason, Collins dealt with BaseNP, 
using a different generation model from the generation of other non-terminals in his 
original head-driven model. While other non-terminals are generated from parent 
node and head child node (i.e. P(Li|P,H)), BaseNP is generated from parent node and 
previous left modifier (P(Li|P,Li-1)). To discuss this specialized generation in more 
details, let us suppose that BaseNP P is generated by production rule r: 

 HLLPr N 1: Λ→   

Then, the generation model of BaseNP is given as follows.  
 ∏ −=

i
ii LPLPPHPrP ),|()|()( 1

 (17) 

where L0 indicates H.  
 
4.2  New EM: Inside-Outside Algorithm Embedding Forward Backward Algo-
rithm  

The specialized dependency for generating BaseNP is characterized to Markov de-
pendency of Hidden Markov Model (HMM). Thus, a forward-backward algorithm for 
learning HMM should be embedded into the original inside-outside algorithm. For 
BaseNP, inside-outside probabilities are further reformulated as follows. 
 
Inside Probability. First, the inside probability is reformulated as follows. 

Collins-LA: Collins’ Head-Driven Model  with Latent Annotation   49



 ])[],[(])[(])[|][(])[( 0 yLxPfyHxPyHPxP
y
∑= ββ  (18) 

Again, we regard L0 as H. f(P[x],Li[y]) indicates the forward probability, which is the 
probability that generates all next left modifiers for given P[x] and Li[y]. This is re-
cursively defined as follows.  

 

∑

∑

=

<

= +++

z
i

z
iiiii

otherwiseyLxPzSTOPP
Mliif

zLxPfzLyLxPzLPyLxPf

])[],[|][(

])[],[(])[(])[],[|][(])[],[( 111 β

 

(19) 

Outside Probability.  

Outside probabilities are reformulated case-by-case as follows. For head-child node H,  
 ])[],[(])[],[()][|][(])[(])[( yHxPbyHxPfxPyHPxPyH

x
∑= αα  (20) 

For i-th left-child node Li,  
 ∑∑=

x y
iii yLxPbyLxPfxPyHPxPyL ])[],[(])[],[(])[|][(])[(])[( αα  (21) 

, where b(P[x],Li[y]) indicates the backward probability which is the probability that i-
th left child node is generated with Li[y] for given P[x]. The backward probability is 
defined as the summation of probabilities of all possible right stop events. 

 ∑ −−−=
y

iiiii yLxPzLPyLxPbyLzLxPb ])[],[|][(])[],[(])[(])[],[( 111β  (22) 

As a special case, the backward probability for head child node - b(P[x],H[y]) is 
defined as the summation of probabilities of all possible right stop events. 

 ∑=
z

yHxPzSTOPPyHxPb ])[],[|][(])[],[(  (23) 

EM Algorithm of the Specialized Collins-LA for BaseNP. 

In the Expectation step, the expected counts are calculated as follows.  

 
])[],[(])[],[(

])[(])[|][(])[()|][],[(
yHxPbyHxPf

yHxPyHPxPTyHxPc βα∝  (24) 

 

])[],[|][(
])[(])[(])[],[(])[],[(

])[(])[|][(])[()|][],[],[(

1

111

1

zLxPwLP
wLzLzLxPbwLxPf

yHxPyHPxPTwLzLxPc

ii

iiii

y
ii

−

−−−

− ∑∝

ββ

βα

 

 

In the Maximization step, Eq. (15) is used to estimate each type of probability. 

50   Seung-Hoon N., Meixun J., In-Su K. and Jong-Hyeok L. 



5  Experimentation  

5.1   Experimental Setting   
We used WSJ sections (1 ~ 21) as a training data, and the first 420 sentences in WSJ 
section 22 as a test set. Through our preliminary experiments, we found that the pars-
ing accuracy between the test set and the standard test set (using WSJ section 23) does 
not show a difference of more than 0.5%.  
 
5.2   Generating N-best Candidate Parse Trees 

Table 1. Oracle Performances of N-best Parse Trees 

 N = 1 N = 50 N = 100 N = 200 N = 300 N = 500 
PCFG 70.25 85.67 87.24 88.78 89.1 89.66 
Klein’s Markoviza-
tion (v=2, h=1) 77.57 89.68 90.93 92.02 92.45 92.82 

 
For generating N-best candidate parse trees, we adopted Klein’s vertical and horizon-
tal markovization [3]. We simply call it Klein’s markovization. As for vertical mark-
ovization level (v) and horizontal level (h), we selected as v = 2 and h = 2. Table 1 
shows the oracle performance for N-best parse trees of Klein’s markovization for 
different Ns (1, 50, 100, 200, 300, and 500), compared with the result of PCFG. 
Klein’s markovization showed a large difference from PCFG’s result when N is 1. As 
N is larger, the performance difference becomes smaller.  
 
5.3   Performance of Collins-LA: Effects of the Number of Latent Variables  
We set N to 200, thus generated top-200 candidate parse trees and re-ranked them 
according to the generation probability of Collins-LA (BaseNP version in section 4). 
Figure 1 shows the parsing accuracy of Collins-LA, and the log-likelihood curve on 
the number of EM iterations, for different ks (1, 2, 4, 6 and 8). As shown in Figure 1, 
the parsing accuracy increases as k is larger, but decreases when k is more than 6. 
This result is probably caused by the data sparseness problem that seriously arises 
when k is 8. Log-likelihood at the final EM iterations is in proportional to k.  
 
5.4   Comparison with Matsuzaki’s PCFG-LA 
To compare Collins-LA with the performance of Matsuzaki’s PCFG-LA, we re-
implemented PCFG-LA. The full binarization of PCFG obtained from the tree-bank is 
not desirable since a serious data sparseness problem is involved. To this end, we 
used a light backbone grammar based on the binarization with center-head technique 
which Matsuzaki used [5], and further with Klein’s vertical and horizontal markoviza-
tions [3]. To see this binarization scheme in more detail, let us consider the original 
production rule(Figure 2). 
Then, figure 3 shows the types of rules of our backbone grammar obtained by binariz-
ing the original rule of figure 2. 

Collins-LA: Collins’ Head-Driven Model  with Latent Annotation   51



 

 

 
(a) Parsing accuracy                                    (b) Log-likelihood curve 

 

 
 
 
 
 
 
 
 
 
 
 
 

  
 

  Figure 1. Parsing accuracy of Collins-LA for different ks, and log-likelihood curve. 

 
 

P

HL1L2 R2R1  
 

Figure 2. A given production rule. 

 
 

P

HL1

L2

R2

R1

H

H

H

 

P

HL1

L2

R2

R1

L1_H

L2_L1_H

L2_H_R

 

P^P�

H^PL1^P

L2^P

R2^P

R1^P

L1^P_H^P

L2^P_L1^P_H^P

L2^P_H^P_R^P

 
a) v = 1, h = 0 

 
b)   v = 1, h = 2 c)   v = 2, h = 2 

Figure 3. Three center-head binarizations are presented using a) Klein’s 
markovization, b) Klein’s markovization with more horizontal markovization, and c) 
Klein’s markovizatoin with Johnson’s parent annotation. We used b) and c) for 
evaluating PCFG-LA. 

 

52   Seung-Hoon N., Meixun J., In-Su K. and Jong-Hyeok L. 



Through several experiments, we found that PCFG-LA becomes the best when h is 2. 
If h is more than 2, then the parsing accuracy decreased. Thus, we selected this hori-
zontal option (i.e. h =2). We optimized the number of latent variables for each non-
terminal node. We assigned the number for latent variables differently according to 
their relative frequencies in the training corpus. During this, we assumed that the 
maximum number of latent variables is 8. Once our assigned the number, the non-
terminal symbols related to noun phrases and verb phrases have 8 different latent 
variables, due to their large relative frequencies, while a coordination symbol (CC) 
has only one latent variable. For generating top N parse trees, we used the same 
grammar (Klein’s markovization) described in section 5.2.  

Table 2 summarizes the best performances of Collins-LA (k = 6) and PCFG-LA (k 
= 8 in maximum).  

Table 2. The final parsing accuracy of Collins-LA and PCFG-LA. 

All length Length ≤ 40  
LP LR F1 LP LR F1 

Baseline  77.78 77.35 77.57 79.21 78.66 78.9 
Collins-LA 80.59 79.63 80.11 82.02 80.68 81.35 
PCFG-LA(v=1,h=2) 81.58 80.07 80.82 83.23 81.43 82.32 
PCFG-LA(v=2,h=2) 82.62 81.46 82.04 84.29 82.86 83.57 

 
As shown in Table 2, Collins-LA is comparable to PCFG-LA (v=1, h=2), without 

showing much difference. Our result of PCFG-LA is less-performed than the result of 
Matsuzaki’s one. The reason for this is that the initial quality of top-N parse trees is 
different. In Matsuzaki’s case, top-1 parsing accuracy of the initial parse trees reaches 
about 80% performance, which is much more superior to about 77% of our top-1 
parse tree. We further evaluated PCFG-LA using the backbone grammar based on the 
binarization with Johnson’s parent annotation (v=2, h=2). Clearly, PCFG-LA with 
parent annotation (v=2, h=2) is superior to Collins-LA and PCFG-LA (v=1, h=2). 
Note that PCFG-LA with parent annotation uses a more complex backbone grammar, 
but Collins-LA uses simple PCFG grammar of (v=1, h=0). The grammar used in 
Collins-LA is more simple than even PCFG-LA (v=1, h=2). Regarding this, the cur-
rent result of Collins-LA can be more improved when adopting the elaborated back-
bone grammar. Although some additional experiments are necessary, this experiment 
identifies that the formalism of Collins’ head-driven model provides a useful frame-
work as PCFG does for latent annotation. This is a sufficiently notable result in the 
way of the research of latent annotation.  

6  Conclusion  

This paper proposed the extension of Collins’ head-driven model with the latent an-
notation, namely Collins-LA. We provided a novel training algorithm of Collins-LA, 
based on an inside-outside algorithm, and further extended it to consider the special 
consideration for BaseNP by embedding a forward-backward algorithm within the 
inside-outside algorithm. Experimental results are inspiring, showing that Collins-LA 
is comparable to PCFG-LA which is equipped with a more elaborated backbone 

Collins-LA: Collins’ Head-Driven Model  with Latent Annotation   53



grammar. Regarding that our current setting of Collins-LA is at an initial stage, its 
performances could be much improved if more accurate grammars and formalizations 
are adopted. The work for improving and extending Collins’ head-driven model is 
important since it can be more flexibly applied to non-English languages than PCFG. 
In the future, we will continue to explore Collins-LA on a more complicated back-
bone grammar, and use a more elaborated linguistic considerations, without losing the 
elegance and principle of the original model.  

Acknowledgements. This work was supported by the Korea Science and Engineering 
Foundation (KOSEF) through the Advanced Information Technology Research 
Center (AITrc), also in part by the BK 21 Project and MIC & IITA through IT 
Leading R&D Support Project in 2007. 

References 

1. Gildea, D.: Corpus variation and parser performance. In: EMNLP ’01. (2001), 167–172 
2. Bikel, D.M.: Intricacies of collins’ parsing model. Computational Linguististics 30(4) 

(2004) 479–511 
3. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: ACL ’03. (2003) 423–430 
4. Johnson, M.: PCFG models of linguistic tree representations. Computational Linguistics 

24(4) (1998) 613–632 
5. Matsuzaki, T., Miyao, Y., Tsujii, J.: Probabilistic CFG with latent annotations. In: ACL 

’05. (2005) 75–82 
6. Petrov, S., Barrett, L., Thibaus, R., Klein, D.: Learning accurate, compact, and interpret-

able tree annotation. In: COLING-ACL ’06. (2006) 433–440 
7. Charniak, E., Johnson, M.: Coarse-to-fine n-best parsing and maxent discriminative 

reranking. In: ACL 2005. (2005) 173–180 
8. Collins, M.: Head-driven statistical models for natural language parsing. Computational 

Linguististics 29(4) (2003) 589–637 
9. Prescher, D.: Head-driven PCFGs with latent-head statistics. In: IWPT ’05. (2005) 115–

124 
10. Charniak, E.: Statistical parsing with a context-free grammar and word statistics. In: 

AAAI/IAAI 1997. (2005) 598–603 

54   Seung-Hoon N., Meixun J., In-Su K. and Jong-Hyeok L. 




