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Abstract. As the phenomenon of information overload grows day by
day, systems that can automatically summarize documents become in-
creasingly studied and used. This paper presents some original methods
for text summarization of a single source document by extraction. The
methods are based on some of our own text segmentation algorithms.
We denote them logical segmentations because for all these methods the
score of a sentence is the number of sentences of the text which are
entailed by it. The first method of segmentation and summarization is
called Logical TextTiling (LTT): for a sequence of sentences, the scores
form a structure which indicates how the most important sentences al-
ternate with ones less important and organizes the text according to its
logical content. The second method, Pure Entailment uses definition of
the relation of entailment between two texts. The third original method
applies Dynamic Programming and centering theory to the sentences
logically scored as above. The obtained ranked logical segments are used
in the summarization. Our methods of segmentation and summarization
are applied and evaluated against a manually realized segmentation and
summarization of the same text by Donald Richie, ”The Koan”, [9]. The
text is reproduced at [14].

1 Introduction

Systems that can automatically summarize documents become increasingly stud-
ied and used. As a summary is a shorter text (usually no longer than a half of
the source text) that is produced from one or more original texts keeping the
main ideas, the most important task of summarization is to identify the most
informative (salient) parts of a text comparatively with the rest. Usually the
salient parts are determined on the following assumptions [6]:

– they contain words that are used frequently;
– they contain words that are used in the title and headings;
– they are located at the beginning or end of sections;
– they use key phrases which emphasize the importance in text;
– they are the most highly connected with the other parts of text.
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If the first four characteristics are easy to achieve and verify, the last one is
more difficult to establish. For example, the connectedness may be measured by
the number of shared words, synonyms, anaphora [7],[8]. On the other hand, if
the last assumption is fulfilled, the cohesion of the resulting summary is expected
to be higher than if this one is missing. In this respect, our methods assure a
high cohesion for the obtained summary while the connectedness is measured by
the number of logic entailments between sentences.

In this paper we present some methods for summarization of a single source
document by extraction based on a previous segmentation. The methods are
genre independent and application independent, and take advantage of discourse
structure.

The paper is structured as follows: in Section 2, some notions about textual
entailment are discussed. Some basics about segmentation of discourse and Log-
ical TextTilling algorithm are given in Section 3, where some different variants
of our methods are presented. Summarization by segmentation is the topic of
Section 4. An original dynamic programming algorithm for segmentation and
summarization is presented in Section 5. We have applied the above methods
of segmentation and summarization to the text [9]. Section 6 summarizes the
statistics of the results. We finish the article with conclusions and possible fur-
ther work directions.

2 Text entailment

In [10] are presented three methods for recognizing the text entailment, based
on the following directional principle: A text T entails an hypothesis H, de-
noted by T → H, iff H is less informative than T . The first method in [10]
is obtained from the text-to-text metric introduced in [1] and from the lexi-
cal resolution introduced in [11] and consists in the verification of the relation:
sim(T, H)T ≤ sim(T, H)H . Here sim(T,H)T and sim(T, H)H are text-to-text
similarities introduced in [1]. The second method in [10] calculates the similarity
between T and H by cosine, the third by a variant of Levenshtein distance. All
these methods confirm the above principle, the highest computational precision
being realized by the second method. We use in this paper the second method.

A very simple algorithm of segmentation (denoted Pure Entailment) based
on the entailment relation is the following:

Input: Text= {S1, S2, · · ·Sn}
Output: Segments Seg1, ..., Segt.

k = 2, t = 1, Segt = {S1}
while k < n do

if (Segt → Sk)
then

Segt := Segt ∪ {Sk}
else

t := t + 1,Segt := {Sk}
endif
k:=k+1
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endwhile

A method of summarization based on the entailment relation is:

Input: Text= {S1, S2, · · ·Sn}
Output: Summary S.

S = {S1}; i = 2
while i < n do

if not (S → Si)
then

S := S ∪ {Si}
endif
i:=i+1

endwhile

3 Segmentation by Logical TextTiling

To observe the difference between the algorithm to detect subtopic structure (as
TextTiling [3]) and our algorithm oriented to detect logical structure of a text,
let us emphasize that for us, the unit of discourse is a sentence, with a level of
importance which is different from the level of importance of its neighbors. A
logical segment is a contiguous piece of text (a sequence of sentences) that is
linked internally but disconnected from the adjacent text. This feature assures
the local coherence of a segment.

The main differences between TextTiling (TT) and our Logical TextTiling
(LTT) method are:

– The tokenization in TT is made by dividing the text into token-sequences
(pseudosentences) of a predefined size. In LTT the individual units are sen-
tences;

– In TT a score is assigned to each token-sequence boundary i, calculating
how similar the token-sequences i− k through i are to token-sequence from
i + 1 to i− k + 1.
In LLT the score of a sentence Si, score(Si), is the number of sentences
of the text which are entailed by Si (or as in section 3.1). A higher score
of a sentence denotes a higher importance. This fact is in accordance with
the following text entailment criteria: A text T entails a text H iff the text
H is less informative than T [10]. So, the more sentences are entailed by a
sentence Si, the higher its importance is.

A boundary (a shift in discourse or a gap) in LTT is determined by a change
in the configuration of logical importance of sentences (see Fig.1. and Fig.2.).
In such a way we have a structural basis for dividing up the discourse into a
series of smaller segments, each with a different configuration of the importance
of components.

The obtained logical segments could be used effectively in summarization.
In this respect, our method of summarization falls in the discourse-based cate-
gory. In contrast with other theories about discourse segmentation, as Rhetorical
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Structure Theory (RST) of Mann and Thompson (1988), attentional / inten-
tional structure of Grosz and Sidner (1986) or parsed RST tree of Daniel Marcu
(1996), our Logical TextTiling method (and also TextTiling method [3]) sup-
poses a linear segmentation (versus hierarchic segmentation) which results in an
advantage from a computational viewpoint.

The algorithm LTT of segmentation is :

INPUT: A sequence of sentences S1, ...Sn and a list of scores score(S1), ...score(Sn)

OUTPUT: A list of segments Seg1, ...Segj

j = 1; p = 1; Seg1 = {S1}
dir=up;

while p < n do

if score(Sp+1) > score(Sp)

then

if dir = up

then

Segj = Segj ∪ {Sp+1}
else

j = j + 1

Segj = {Sp+1}
dir=up

endif

else

Segj = Segj ∪ {Sp+1}
dir = down

endif

p = p + 1

endwhile

A very useful variant of the algorithm is to begin a new segment only if the
score score(Sp) is bigger than a given threshold.

3.1 ArcInt and ArcReal scores

As variants of the above score of a sentence as the number of entailed sentences
we introduced in this paper two different types of scores: ArcInt and ArcReal.
Because the entailment relationship takes place between two sentences, we will
consider that those two sentences are bounded together by an ”arc”. From a
single sentence point of view, it can be the starting point of such an ”arc”, or it
can be the destination point, or an in-going arc can pass over it. If i<k<j and
sentence i entailes sentence j, then over sentence k passes an ”arc” that starts
from i and goes to j. If all these ”arcs” that start from a sentence, that stop in
that sentence and that pass over it are counted, the ArcInt score is obtained.
In a way, it shows how the current sentence is linked to the other sentences.
But because an entailment relationship is stronger if the sentences involved are
close to one another, the sum of all arcs over their length could give a more

18   Tatar D., Tamaianu-Morita E., Mihis A. and Lupsa D.



precise measure: ArcReal. The following formulas specify more clearly ArcInt
and ArcReal measures for a sentence k:

ArcIntk =
k∑

i=1

n∑

j=k,i<>j

entailsi,j +
n∑

i=k

k∑

j=1,i<>j

entailsi,j

ArcRealk =
k∑

i=1

n∑

j=k,i<>j

entailsi,j

| i− j | +
n∑

i=k

k∑

j=1,i<>j

entailsi,j

| i− j |

where entailsi,j = 1 if si → sj and entailsi,j = 0, otherwise.
The application of LTT method to sentences scored by ArcInt and ArcReal we

will denote in the paper by ArcInt and ArcReal methods. These three methods:
LTT, ArcInt and ArcReal are denoted as Logical methods.

4 Summarization by segmentation

The representation of the text as a structure is motivated by our goal of generat-
ing summary extracts, where a salience function must tell us which sentences are
more salient, to be introduced in the summary. However, given a set of segments
we need a criterion to select the segments and those sentences from a segment
which will be introduced in the summary. The summarization algorithm from a
sequence of segments is the following:

INPUT: The segments Seg1, ...Segj , the length of summary X (as parameter);
OUTPUT: A summary SUM of length X .

Calculate the ”salience” of each segment and rank the segments in Segi1 , ...Segij ;
Calculate the number of sentences in each segment Segis , cis ;
Select first k(< j) segments such that

∑
Segis

cis = X;

Reorder selected k segments by their occurrence in text: Seg′1, ...Seg′k ;
SUM = {Seg′1, ...Seg′k} ;

In our paper we considered equal salience of segments and we selected from
each segment as the most salient sentence, the sentence with the maximal score.

5 Dynamic Programming algorithm

In this section we describe our method of summarization by Dynamic Program-
ming. The segmentation of the text is made from the summary, choosing as the
first sentence of a new segment a sentence from the summary. In order to meet
the coherence of the summary the algorithm selects the chain of sentences with
the property that two consecutive sentences have at least one common word.
This corresponds to the continuity principle in the centering theory which re-
quires that two consecutive units of discourse have at least one entity in common
([7]). We make the assumption that, with each sentence, is associated a score
that reflects how representative is that sentence. In these experiments the scores
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are the logical scores as used in the previous sections. The score of a selected
summary is the sum of individual scores of contained sentences. The summary
will be selected such that its score is maximum.

The idea of the Dynamic Programming Algorithm is the following.
Let us consider that δk

i is the score of the summary with length k that begins
with the sentence Si. Suppose that we ignore for the moment the requirement
that each two consecutive sentences in the summary must have at least one
common word. Then the next relation holds:

δk
i = score(Si) + maxj (i<j) (δk−1

j )

If we introduce a penalty for the case in which two consecutive sentences have no
words in common, the recursive formula becomes: δk

i = maxj (i<j)(score(Si) +
δk−1
j ) if Si and Sj have common words and δk

i = maxj (i<j)(penalty∗(score(Si)+
δk−1
j )) if Si and Sj have no common words. When running the implementation

of the algorithm we used a penalty with value equal to 1/10.
Dynamic Programming Algorithm
INPUT:
-the text to be sumarized, that is a sequence of sentences S1, ..., Sn

-score(Si) – scores associated to each sentence
-the length X of the summary
OUTPUT:
A summary SUM of length X

for i = n downto 1 do
δ1

i = score(Si)
for k = 2 to X do

δk
i = maxj (i<j)(score(Si) + (δk−1

j )) if Si and Sjhave common words

δk
i = maxj (i<j)(penalty ∗ (score(Si) + (δk−1

j ))) otherwise

hk
i = argmaxj (i<j)(score(Si) + (δk−1

j )) if Si and Sj have common words

hk
i = argmaxj (i<j)(penalty ∗ (scor(Si) + (δk−1

j ))) otherwise
endfor

endfor
i = argmaxj( δX

j )
SUM = empty
for k = X, 1, step = −1 do

SUM = SUM ∪ {Si}
i = hk

i

endfor

A short comparison with greedy algorithm in [7] is the following: our algo-
rithm is based on previously calculated scores for sentences while greedy algo-
rithm starts with previously calculated scores for sentences, but continuously
adjusts them, depending on the sentences chosen in the summary. A second as-
pect is that our algorithm obtains the optimum solution. Because the scores of
the sentences in greedy algorithm depend on the obtained summary, it would
be difficult to have in this case a non-backtraking algorithm that obtains the
optimum solution.
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6 Experiments

It is now generally accepted that for single news article systems produce sum-
maries indistinguishable from those produced by humans [8]. However, we apply
our algorithm of segmentation and summarization to the narrative literary text
by Donald Richie ”The Koan” [9] reproduced at http:// www.cs.ubbcluj.ro/
dtatar/ nlp/ Koan-fara-anaph.txt. The manual anaphora resolution is repro-
duced at http:// www.cs.ubbcluj.ro/ dtatar/ nlp/ anaphEmma.txt. The struc-
tures of logically scored sentences for initial text and for anaphora solved text
are presented in Fig.1. The structure of ArcInt and ArcReal scored sentences is
presented in Fig.2.

6.1 Evaluation of segmentation

There are several ways to evaluate a segmentation algorithm. These include
comparing the segments against that of some human judges, comparing the
segments against other automated segmentation strategies and, finally, studying
how well the results improve a computational task [7]. We will use all these
ways of evaluation, including the study how our segmentation method effect the
outcome of summarization (Section 6).

Regarding the comparison with the human judge, the method is evaluated
according to [3]:

– how many of the same (or very close) boundaries (gaps) with the human
judge the method selects out of the total selected (precision);

– how many true boundaries are found out of the total possible (recall)

We compared with Short (19 segments) and Long (22 segments) manual
segmentations (as the gold standards) the results of segmentation obtained by
the methods: LLT (with the variants of ArcInt and ArcReal scoring, with and
without anaphora solved) , Pure Entailment (with and without anaphora solved),
Dynamic Programming (with and without resources, with and without anaphora
solved). The resources used in Dynamic Programming method are enumerated
in Section 6.3.

The evaluation of the segmentation against the manual summaries (Manual =
Short, Long) is made with the following measures:

PrecisionMethod,Manual =
Number of correct gaps

Number of gaps of Method

RecallMethod,Manual =
Number of correct gaps

Number of gaps of Manual

where Number of correct gaps is the numbers of begins of segments found by
Method which differ with -1,0,+1 to the begins of segments found by Manual.

The results are presented in the following table:
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Table 1. The results of manual segmentation in Short and Long variants. The results
of LTT and PE methods

Manual Manual Method Method
Short Long LLT PE

Segment Sentences Segment Sentences Segment Senteces Segment Sentences

Seg.1 1 Seg.1 1 Seg.1 1− 2 Seg.1 1
Seg.2 2− 6 Seg.2 2− 4 Seg.2 3− 5 Seg.2 2− 6
Seg.3 7− 9 Seg.3 5− 6 Seg.3 6− 7 Seg.3 7− 8
Seg.4 10− 12 Seg.4 7− 9 Seg.4 8− 11 Seg.4 9
Seg.5 13− 14 Seg.5 10− 12 Seg.5 12− 14 Seg.5 10
Seg.6 14− 15 Seg.6 13− 14 Seg.6 15− 17 Seg.6 11
Seg.7 16− 20 Seg.7 15− 18 Seg.7 18− 23 Seg.7 12
Seg.8 21− 24 Seg.8 19− 20 Seg.8 24− 28 Seg.8 13
Seg.9 25− 29 Seg.9 21− 22 Seg.9 29− 32 Seg.9 14− 16
Seg.10 30− 32 Seg.10 25− 29 Seg.10 33− 35 Seg.10 17
Seg.11 33 Seg.11 30− 32 Seg.11 36− 39 Seg.11 18− 20
Seg.12 34− 38 Seg.12 33 Seg.12 40− 43 Seg.12 21
Seg.13 39− 43 Seg.13 34− 38 Seg.13 44− 46 Seg.13 22
Seg.14 44− 45 Seg.14 39− 43 Seg.14 47− 49 Seg.14 23
Seg.15 46− 50 Seg.15 44− 45 Seg.15 50− 51 Seg.15 24
Seg.16 51− 52 Seg.16 46− 50 Seg.16 52− 55 Seg.16 25
Seg.17 53− 55 Seg.17 51− 52 Seg.17 56− 58 Seg.17 26
Seg.18 56 Seg.18 53− 55 Seg.18 59− 60 Seg.18 27− 32
Seg.19 57− 65 Seg.19 56 Seg.19 61− 65 Seg.19 33

Seg.20 57− 60 Seg.20 34
Seg.21 61− 63 Seg.21 35− 41
Seg.22 64− 65 Seg.22 42

. . . . . .

To save space we omit the description of the segments 23 to 32 of PE methods.
The comparison between the Precision and the Recall of different logical

methods presented in this paper reported to Short and Long manual segmenta-
tion is given in the Fig.3. and Fig.4..
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number of implied 
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Fig. 1. The logical structure of the text.

The different results of Dynamic programming method are presented in Fig.5.
and Fig.6..
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Fig. 2. ArcInt and ArcReal structure of the text.
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Fig. 3. Comparison of Logical methods with Short segmentation
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Fig. 4. Comparison of Logical methods with Long segmentation
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Fig. 5. Comparison of Dynamic Progr. methods with Short segmentation

6.2 Summarization

The gold standards for summaries are obtained manually from manually realized
segmentations. The summaries are, in Short and Long variants: Short= {1, 2 +
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Fig. 6. Comparison of Dynamic Progr. methods with Long segmentation

4, 7, 10, 14, 16or18, 19, 24, 29, 31, 33, 38, 41, 45, 50, 52, 55, 56, 62 or 65} and Long =
{1, 2 + 4, 6, 7, 10, 14, 16 or 18, 19, 24, 29, 31, 33, 38, 41, 45, 50, 52, 55, 56, 62, 65}.

The summary determined by LTT method on initial text is formed by the
sentences: {1, 4, 6, 9−10, 12, 16, 18, 27, 29, 33, 36, 40, 44−45, 47, 50, 54, 57, 59, 62}.
The presence of pairs 9-10 and 44-45 in summary is caused of the equal scores
for the sentences 9,10 and 44,45 (see Fig.1.). The summary determined by LTT
method on the text with Anaphora solved is formed by the sentences: {1, 5 −
6, 8, 11, 14, 16, 18, 20, 29, 31, 33, 36, 38, 40, 44, 47, 50, 52, 54, 57, 60, 62, 65}.

The precision and the recall of the different methods when the manually
summaries are considered are presented in Fig.7-Fig.10.
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Fig. 7. Precision and Recall for Logical methods (Short summary as standard)

6.3 Implementation details

For Dynamic Programming algorithm we used the LYRL2004 stop-list, which
is an ASCII file (english.stop), 3,589 bytes in size. It contains a list of 571 stop
words, one per line, and was developed by the SMART project [5],[12] Also, to
determine the common words between two sentences we used the files of nouns,
adverbs, verbs and adjective of WordNet. To compare words in text with the
words in these lists we used Porter stemmer. We used also a part of OpenNLP
tools to identify sentences in text, and the tokens (words) at [13]. OpenNLP
defines a set of Java interfaces and implements some basic infrastructure for
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Fig. 9. Precision and Recall for Dynamic Programming method (Short summary as
standard)
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Fig. 10. Precision and Recall for Dynamic Programming method (Long summary as
standard)

NLP components. We selected from there sentence detection and tokenization.
Also, some of our algorithms have been realized as spreadsheet programs in
Microsoft Excel.

7 Conclusion

As the abstraction is harder to be developed in summarization systems, the effort
in extraction should be done with a view to increasingly coherent summaries
with more accurate ways of identifying the important pieces of information. This
paper shows that the discourse segmentation by text entailment relation between
sentences is a good basis for obtaining highly accurate summaries (ranging from
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30 per cent to over 60 per cent [4]) . Also, scoring the sentences on a logical base
can give good results with a neutral method such as Dynamic Programming.

The algorithms described here are fully implemented and use text entailment
between sentences without requiring thesaural relations or knowledge bases. The
evaluation indices acceptable performance when compared against human judge-
ment of segmentation and summarization. However, our method for computing
the logical score of a sentence has the potential to be improved. We intend to
improve our text entailment verification tool and to study how the calculation
of logical score of a sentence (considering only neighbors of a target sentence, or
considering also the number of sentences which imply the target sentence, etc)
effects the segmentation and the summarization.

Our method was tested only on narrative texts. We intend to extend the
evaluation using other types of texts.
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