

Flexibility, Configurability and Optimality
in UNL Deconversion via Multiparadigm Programming

Jorge Marques Pelizzoni, Maria das Graças Volpe Nunes

Universidade de São Paulo, Instituto de Ciências Matemáticas e de Computação
Av. do Trabalhador São-Carlense, 400. CEP 13560-970. São Carlos – SP – Brasil

{jorgemp, gracan}@icmc.usp.br
http://www.nilc.icmc.usp.br

Abstract. The fulfillment of the UNL vision is primarily conditioned on the
successful deployment of deconverters, each translating from the UNL into a
target language. According to current practice, developing deconverters ulti-
mately means configuring DeCo, the deconversion engine provided by the
UNDL Foundation. However, DeCo has a number of limitations that hinder
productivity and might even preclude quality deconversion. This paper dis-
cusses some of these shortcomings and introduces an alternative deconversion
model – Manati, which is the result of work on UNL-mediated Portuguese-
Brazilian Sign Language human-aided machine translation. With Manati we at-
tempt to exemplify how multiparadigm – namely, constraint, object-oriented
and higher-order – programming can be drawn upon not only to specify an
open-architecture, optimum-searching deconversion engine but also and above
all to rationalize its configuration into deconverters for target languages.

1 Introduction

The fulfillment of the UNL vision [10, 11, 18] is primarily conditioned on the suc-
cessful deployment of deconverters, each translating from the UNL into a target lan-
guage. UNL deconversion is actually an instance of Natural Language Generation
(NLG), which refers to rendering linguistic form to input in a non-linguistic represen-
tation. As pointed out by e.g. Reiter & Dale [13], Cahill & Reape [3], and Paiva [12],
NLG can be a very complex task involving processing both linguistic (e.g. lexicaliza-
tion, aggregation and referring expression generation) and otherwise (e.g. content
selection and layout planning). The good news is that UNL deconversion is in fact
restricted to the linguistic aspect of NLG, which can be termed linguistic realization
and comprises the usual macro-level tasks of microplanning and surface realization.
Therefore, one should naturally expect UNL deconversion to benefit from recent
advances in Natural Language Generation and software development practice, for
which reason UNL developers may need to go beyond the model underlying the De-
Converter – or simply DeCo, the generic deconversion engine provided by the UNDL
foundation.

In this paper we analyze DeCo both as a formal object and a software product,
with an emphasis on discussing DeCo’s features that may hinder productivity. In this
analysis we adopt configurability (i.e. ease of configuration into full-fledged decon-

© J. Cardeñosa, A. Gelbukh, E. Tovar (Eds.)
Universal Network Language: Advances in Theory and Applications.
Research on Computing Science 12, 2005, pp. 175–194.

176 Jorge Marques Pelizzoni, Maria das Graças Volpe Nunes

verters), flexibility to accommodate application-specificities and support for optimal-
ity (i.e. search for optimal solutions) as meta-requirements for an ideal deconversion
model. As a first attempt to meet these requirements and overcome DeCo’s limita-
tions, we conceived Manati, an alternative linguistic realization/UNL deconversion
model. Manati exemplifies how multiparadigm – namely, constraint, object-oriented
and higher-order – programming can be drawn upon not only to specify an open-
architecture, optimum-searching deconversion engine but also and above all to ra-
tionalize its configuration into actual deconverters for target languages. In order to
present important aspects of Manati’s rationale, we introduce LIBRAS, the Brazilian
Sign Language, and PUL∅, a UNL-mediated Portuguese-LIBRAS machine transla-
tion project, as it was PUL∅ that provided (i) the opportunity to experiment with
DeCo and (ii) specificities that promptly exposed its limitations.

The paper proceeds as follows. Section 2 shortly introduces DeCo to the unac-
quainted; Section 3 states the LIBRAS case and introduces LIST (LIBRAS Script for
Translation), a notation employed in some examples; Section 4 discusses DeCo’s
limitations; and Section 5 briefly describes Manati.

2 Meet DeCo

In this section, we review only those features of DeCo’s which are essential to our
discussion, i.e. just enough to illustrate how most effort is expended in DeCo’s appli-
cation. This is a very simplified overview especially to cater for the unacquainted
with DeCo’s abstract machine. For a thorough description, please refer to the DeCon-
verter Specifications document provided by the UNL Centre/UNDL Foundation. It is
worth mentioning that the terminology used in this section slightly differs from that
of the referred document.

2.1 Configuration

In order to configure DeCo, i.e. prepare it to translate UNL hypergraphs into text in a
specific target language, one must feed it with at least two basic language-specific
resources, namely a UNL-target language dictionary and an ordered set of decon-
version rules.

In short, each dictionary entry has a twofold function: (i) to declare a possible
mapping of a UW1 Src into a target language word or morpheme Target2 and (ii) to
state a set of atomic (i.e. non-structured) features3 that should be assumed for Tar-
get whenever the declared mapping happens to be used. For example, supposing one
intended to state that the UW “I” should be translated into English “I”, “me”, “my” or

1 UWs (Universal Words) are UNL words. Formally, they are possible node labels in UNL

graphs.
2 Though rather unusual, Target might also be an intermediate symbol later to be erased.
3 The term “feature” is herein employed much in the grammatical sense. In computer jargon,

“flag” would be more appropriate.

Flexibility, Configurability and Optimality in UNL Deconversion 177

“mine” under mutually exclusive conditions, there would usually be at least four
distinct dictionary entries, as shown in Table 1. It is worth mentioning that develop-
ers are free to design their own set of possible features, as well as their respective
meanings. The developers of the entries in Table 1 seem to have found it interesting
to encode the grammatical cases each English pronoun can accept (by means of fea-
tures SUBJ and OBJ), parts-of-speech (PRO and DET), and person-cum-number
information when needed (1PS, 3PS, and 3PP). Nevertheless, they might as well have
found it more convenient e.g. to split the latter into independent features, some for
person (1P and 3P) and others for number (PLU and SING), the only actual require-
ment being consistence. Finally, it should be noticed that a feature set belongs to the
entry/mapping, not to the target word proper, as one would expect e.g. English
“mine” to have a rather different feature set were the source UW “mine(icl>source)”.

Table 1. Example UNL-English dictionary entries mapping the
UW “I” into “I”, “me”, “my” or “mine”

UW English Features
I I {SUBJ, PRO, 1PS …}
I me {OBJ, PRO, 1PS …}
I my {DET, 3PS, 3PP …}
I mine {SUBJ, OBJ, PRO, 3PS, 3PP …}

In turn, the set of deconversion rules specify exactly how deconversion should be
carried out, including when to access the dictionary. These rules are intrinsically
procedural and somehow encode the grammar of the target language in terms of op-
erations (sensing/writing/erasing) on features. Deconversion rules can only be cor-
rectly understood with DeCo’s abstract machine in mind.

2.2 Abstract Machine

Roughly speaking, DeCo can be regarded as a non-deterministic Turing Machine
fitted with some dictionary and graph lookup facilities. Its output is gradually built on
an extensible/retractable tape, initially empty, by a pair of ever-contiguous
read/write (RW) heads. At the end of deconversion, the sequence of tokens on the
tape is printed out verbatim from left to right, and that should constitute the target
text. However, if the tape were a mere string of tokens, it would have been of little
use. As depicted in

Fig. 1, it is actually a string of cells each containing not only one single output to-
ken but also control data in the form of a rewritable feature set and usually a UW and
a set of relations to nodes in the input UNL graph. The UW and relations can only be
present if the cell results from the transference of an input node onto the tape, and
those are precisely the UW of the referred node and all unexplored relations it has to
other input nodes. A node is selected for transference by means of a relation it has to
some focused cell (i.e. currently under one RW head); if the transference succeeds,
then the referred relation is said to have been explored. Node transference is illus-
trated in Fig. 2 and further explained below.

178 Jorge Marques Pelizzoni, Maria das Graças Volpe Nunes

Much like bits of a Turing Machine’s transition relation definition, deconversion
rules are always relative to the pair of RW heads. Among other things, every rule
may specify some of the following: (i) preconditions on the features, tokens or UWs
of several existing cells (the two focused cells and variable-length sequences of cells
on each side of and even between4 the heads); (ii) similar preconditions on a new
potential cell to be inserted; if this potential cell should result from the transference of
a node, (iii) the label of the relation this node must have to one specific focused cell;
(iv) features to be removed from or added to each focused cell (possibly a newly-
inserted one); (v) whether to delete or replicate one specific focused cell; and, if the
rule is not trying to insert or delete a cell, (vi) whether the heads should jointly slide
one position to the left or right on completion. Naturally, a rule is applicable iff the
preconditions (i) to (iii) are satisfied, and the actions of a rule are put into effect only
if it is applicable and is actually selected for application.

Fig. 1. Cells on DeCo’s output tape

Two types of deconversion rules are of special interest to our discussion, namely:

• feature-modifying rules, which simply add or remove features to focused cells
and optionally move the heads one position right or left on the tape. Features not
only encode linguistic and conceptual information of the corresponding target lan-
guage tokens, but also function as symbols in Turing Machines and much too often
are used to simulate global states, implementing the rudiments of subroutines. For
example, suppose there is the following top-priority set of rules (listed in order of
priority. Notice this is not DeCo’s actual notation):

if read(right, REWIND) and read(left, LEFT_DELIMITER)
 then erase(right, REWIND);
if read(right, REWIND)
 and not(read(left, LEFT_DELIMITER))

4 This feature is only available to node-inserting rules and is explained later, when we tackle

node-transferring rules, a specialization thereof.

RW heads

UNL relation

relation
label

UNL nodes

focused
cells

Flexibility, Configurability and Optimality in UNL Deconversion 179

Fig. 2. Before and after node transference

then erase(right, REWIND),
 write(left, REWIND), move(left);
if read(left, REWIND) then move(left);

where read(H,F) is true iff head H can read F among the features of its respective
focused cell, write/erase(H,F) adds/removes feature F to/from the cell focused
by head H, and move(D) makes the heads move jointly one cell towards direction D.
In this situation, a lower-priority rule writing REWIND roughly corresponds to
calling a subroutine that will take the heads to the left end of the tape;

• node-transferring rules, which can also change the features of one focused cell,
but whose most relevant effect is transferring one node from the UNL graph onto
the tape and consequently expanding it. This is an all-important moment during
deconversion as it is when the transferred node is “amalgamated” with one of its
possible translations in the dictionary according to its UW, creating a new cell
whose UW and output token are directly copied from the corresponding dictionary
entry and whose feature set is initialized with (i) the features found in the entry, (ii)
features homonymous to the UNL attributes found in the transferred node and (iii)
features informative of the relations of the transferred node (e.g. a feature >R or
<R indicates that the node plays respectively the left or right role in a relation la-
beled R). This process is depicted in Fig. 2. As an insertion rule may place precon-
ditions on the feature set, token and UW of potential new cells, which are com-
puted as just described, it follows that it is possible not only to state preconditions
on the UNL attributes and relations of candidate nodes but also filter acceptable
dictionary entries at all times.

One particularity of node-transferring rules, as well as node-inserting rules in gen-
eral, is that the actual landing site of the new cell is not necessarily next to the anchor
cell (i.e. the preexisting focused one, which provides the relation to be explored).

uw token features

dictionary

rel. to be
explored

potential
new cell
(focused)

right head automati-
cally moves onto
newly-inserted cell

BEFORE AFTER

180 Jorge Marques Pelizzoni, Maria das Graças Volpe Nunes

These rules may also specify a sequence of cells that should be present between the
anchor cell and the cell to be inserted. Any such sequence is said to be between the
heads, which is a very ephemeral state, as the heads again become contiguous right
after insertion. It is exactly the mentioned particularity that allows e.g. the generation
of discontinuous constituents, like the underlined subject in “A law was enacted dur-
ing the previous administration that would require factories to reduce their emission
of air pollutants by 70% over the next 3 years.”

2.3 Nondeterministic Execution

DeCo executes nondeterministically in that it often reaches choice points, at each of
which it has to choose from a priority-ordered set of alternative execution branches.
DeCo then selects the highest-priority one to continue, but keeps track of the alterna-
tives so that it may backtrack on failure. Backtracking consists of rolling execution
back to the latest non-exhausted choice point, taking the highest-priority alternative
branch not yet attempted and thus resuming execution. Unrecoverable failure, i.e.
output consisting of an error message, arises from the exhaustion of all combinations
of choices or usually timeout, due to combinatorial explosion. Success is restricted to
the first good guess in depth-first search. Choice points are created whenever (i) there
is more than one applicable rule or, during application of an insertion rule, (ii) there is
more than one acceptable dictionary entry and/or eligible node for transference. It is
worth mentioning that, whether implicitly or explicitly, developers statically stipulate
the priority of every dictionary entry and deconversion rule.

Given one UNL graph as input, a configuration of DeCo tries to produce text in
the target language of choice as follows: (i) DeCo starts with a tape containing only
two predefined delimiter cells; (ii) it regularly transfers the entry node to the input
graph onto the tape, between the delimiters; (iii) the right head is placed over the
newly-inserted cell; (ii) DeCo iteratively applies rules until the right head tries to
trespass the right end of the tape, the only sign of success; (iii) whenever DeCo gets
stuck for lack of applicable rules, it tries to backtrack, unrecoverable failure arising
from lack of non-exhausted choice points.

3 LIBRAS Testifies

This paper is one by-product of a very first attempt at Portuguese-LIBRAS5 machine
translation. This project is still under development but has provided enough opportu-
nity to experiment with DeCo and put forth and implement the first draft of Manati,
our alternative deconversion model. Naturally, neither DeCo nor Manati is ever in-
tended to produce actual LIBRAS speech6, but a script thereof – LIST (LIBRAS

5 LIBRAS is an acronym for “LÍngua BRAsileira de Sinais”, which is Portuguese for “Brazil-

ian Sign Language”.
6 The words “spoken”, “speech”, etc. are employed here especially as opposed to “written”,

“writing”, etc. Specifically, those words should not be regarded as necessarily implying oral-

Flexibility, Configurability and Optimality in UNL Deconversion 181

Script for Translation) – to feed an eventual speech synthesizer. LIST is still in its
infancy and shall be the result of a compromise between simplification of the transla-
tion apparatus and sufficiency for final synthesis.

To avoid some frequent misconceptions, it is worth reminding that sign languages
are full-fledged languages on their own and usually rather dissimilar to their national
oral counterparts. In fact, oral languages usually regarded as very different and thus
translation–hard become in many respects closely related when sign languages come
into scope. For the specific pair at issue, Portuguese and LIBRAS, we find that trans-
lation can be at times much harder than between Portuguese and English, for exam-
ple. We shall present some evidence of this later, but plenty can be found elsewhere,
as in Speers [15] and Brito [2]. Another point worth mentioning is that Linguistics
have lately dedicated more and more attention to the subject, and most concepts and
terms originally coined for the analysis of oral languages – such as “word”, “phonet-
ics”, “phonology”, “morphology”, “syntax”, and “prosody” – naturally apply and
have been applied to sign languages as well.

LIBRAS is profligate in especially challenging problems for transla-
tion/deconversion and thus compelling examples, as several of Manati’s features are
thereby motivated. Consequently, an informal introduction to LIST is in order, so that
LIBRAS examples can be presented.

First of all, LIST should not be expected to be readable by end-users. It is an inter-
face protocol between two software modules: a translator and a speech synthesizer. If
humans are ever to understand it, those must be the developers of those modules.
Currently, LIST is biased towards ease of translation and, as much as possible, tries
to approximate LIBRAS sentences with lists of logograms7. For the sake of readabil-
ity, each logogram will herein be represented by a blank-delimited English string
suggestive of its meaning in LIBRAS. For example, we show three LIST logograms
below:

cut-with-a-knife old-man closed

LIST allows for tree-like structuring by means of prosodic groups, which are
square-bracketed lists of logograms or other prosodic groups. This construct is to be
used wisely and is just meant to include annotations strictly required by synthesis.
The current prescriptions for prosodic group usage are beyond the scope of this pa-
per, it sufficing to mention that every LIBRAS sentence is itself a prosodic group.
Therefore, the following are examples of LISTified LIBRAS sentences: [wa-
ter still mosquito be-born grow] (“Mosquitoes are born and grow in still wa-
ter.”) and [I say water dangerous] (“I told you water is dangerous.”).

Finally, both logograms and prosodic groups as a whole may have associated at-
tribute-value matrices (AVMs), which allow e.g. (i) adding inflectional data to the
logograms of the few inflected words of LIBRAS and (ii) annotating prosodic groups
with the relevant prosodic information. An AVM is a curly-bracketed list of Attrib-

ity. In the case of sign languages, for example, speech synthesis involves actually moving an
artificial communication actor, either by means of computer graphics or robotics.

7 Each logogram is an atomic (i.e. non-analysable), strictly non-phonologically motivated
symbol standing for a word. Chinese characters are examples of logograms; and, much
though one can identify smaller component logograms inside a bigger Chinese character, the
meaning of the latter can never be deduced from the former.

182 Jorge Marques Pelizzoni, Maria das Graças Volpe Nunes

ute:Value pairs and is attached to the adjacent logogram or group to its left. When an
Attribute is given without a value, Attribute:true is implied. For example,

[ask{subjpers:2ps objpers:3pp}]{imperative}

represents a one-word LIBRAS sentence meaning “Ask them!” and implies that
LIBRAS ask agrees in person with its subject and object simultaneously, which are
lexically absent in this sentence. Again, there are strict specifications ruling AVM
usage, but they do not need to be covered here. It suffices to mention that, in addition
to subjpers and objpers, attributes subjgend, objgend and objlidgend shall be used
in examples and imply gender agreement of a verb with its subject, object and lid of
its object (!), respectively.

4 DeCo Exposed

The craft of programming DeCo requires clockwork precision. Correct deconversion
can be summed up as scheduling the transference of nodes with accuracy and han-
dling cell features at the right times, since all things are global, flat, transient and
public. Precise prioritizing of rules is the key. For example, supposing a verb must be
preceded by its subject and object in that order, it follows that:

1. subject insertion rules must have priority over those for object insertion, as subject
and object source nodes usually have direct UNL relations to verb cells;

2. the moment just after the insertion of a subject, in which it is adjacent to its verb, is
the opportunity to solve whatever matters of agreement between them by means of
rules that add specific features to the cell of the verb according to features they
read in the cell of the subject. These agreement rules must thus have priority over
object insertion;

3. agreement rules must read the right subject features; therefore, just in case e.g. we
are dealing with a compound subject, there are likely to be rules computing the
sum of agreement features (e.g. 1PS + 3PS = 1PP). These agreement sum rules
must thus have priority over agreement;

4. subject insertion as a whole cannot simply have priority over agreement sum, as
the insertion of nested modifying noun phrases may hinder the sum. Agreement
sum must thus be interleaved with subject insertion;

5. sometimes and especially for languages with more than two number features (e.g.
LIBRAS, the Brazilian Sign Language), the exact number of a noun phrase is not
given by the source node of its nucleus (e.g. “those two girls”). Thus, at least some
noun modifier insertion rules must have priority over agreement sum.

Obviously, the tasks above are error-prone, since each of these rule subsets (sub-
ject/object insertion, agreement, etc.) usually contains numerous low-level, hardly
readable rules involving various artificial control features to keep DeCo’s abstract
machine on track. Furthermore, priority can be implemented not only by rule order-
ing but also – and often – implicitly, by careful positioning of the heads, which is
always a must, anyway. Frequently a whole process is triggered by one single rule
waiting on a certain feature/command under e.g. the left head only. The developer

Flexibility, Configurability and Optimality in UNL Deconversion 183

then choreographs the heads ingeniously so that the left head will only pass over the
trigger at the right time. This is known to be a major source of unmanageability but is
hard to avoid in real DeCo programming.

In the following sections, we discuss DeCo’s limitations from two perspectives:
firstly, as a formal object and, finally, as a software product.

4.1 Formal Limitations

In this section, we demonstrate some undesirable consequences of DeCo’s formal
specifications, which may hinder if not preclude operations necessary to quality de-
conversion.

Precondition Language

As routine a phenomenon as verb agreement suffices to demonstrate maybe the great-
est among DeCo’s limitations, namely the absolute simplicity of the precondition
specification language. Cells do not hold attribute-value matrices, just plain feature
sets; each feature is literally atomic; and the precondition language is equivalent to
predicate logic. This means that, even though features like (i) pers=1ps and (ii)
pers=3pp are possible, they appear to preconditions as if unrelated. Therefore, for
each and every possible person feature a subject may assume, there must be a distinct
rule to generate the corresponding information in the verb. It is simply not possible to
express something like:

if read(left,SUJ) and read(right,V) and
 read(left,pers=$X) and not(read(right,pers=$_))
then write(right,subjpers=$X)

with $X and $_ as variables. Neither would read($X,SUJ) be possible, implying that,
if subjects were to be generated now to the right, now to the left of verbs, then there
would have to be distinct rules to deal with each side, doubling the number of agree-
ment rules.

In general, implementing any n-ary function (i.e. one head writing a specific value
whenever n features of the form Parami=Vali are read) takes as many rules as the
cardinality of its domain, or rather, the product of the cardinalities of the domains of
its parameters. If exactly the same function should yield its result now in the left, now
in the right focused cell, taking its parameters from the other focused cell, then that
number of rules doubles.

Linear, Non-Structured Output

Much of the awkwardness exemplified in the previous topic is due to the fact that
DeCo gradually builds a linear tape of otherwise formally unrelated cells, which
ultimately – and implicitly – stands for a highly structured entity, i.e. some sen-
tence/text in a target language. Surely deconversion rules are designed to impose e.g.
agreement and positioning constraints between syntactic constituents. The nuisance is
that these constraints can never be expressed in terms of real syntactic structure. Con-
figuration would be more natural if deconversion could be analyzed as if including
two decoupled steps as follows:

184 Jorge Marques Pelizzoni, Maria das Graças Volpe Nunes

• syntactic mapping, in which real syntactic nodes were created and explicitly re-
lated to each other as if, given e.g. a verb node and a noun phrase root node, the
developer could simply say “Verb, this is your subject!”; and

• governor-governee constraining, in which one could simply state “this class of
verbs agrees in person with its subject and object” or “this other class agrees in
gender with its subject” and rely on the deconversion engine to impose these con-
straints during syntactic mapping implicitly.

Subgraph Matching

Deconversion would simply not be possible if rules were not able to sense the input
UNL graph, even if only from the limited point of view of a focused cell. In fact,
DeCo allows node-transferring rules to inspect no further than exactly one node di-
rectly linked to one focused cell (the other head is over the inspected node, so to
speak). It is left to the other rules at most to sense relation-related features, i.e. those
of the form >R or <R indicating that the inspected cell plays the left or right role in
some relation labeled R.

Therefore, if ever a higher-level translation step requires inspecting/matching a
less limited subgraph as a purely semantic precondition, then a cumbersome routine
is in order of transferring the whole subgraph onto the tape and next deleting the
undesired cells. This has an extreme side-effect: if the precondition succeeds, then the
relations of the subgraph will have been explored and thus can never be traversed
again by other translation steps. Unless the referred step coincidentally consumes the
whole subgraph, that side-effect is unacceptable. In short, DeCo does not support
general subgraph matching, which represents a heavy constraint on the expression of
semantic preconditions.

Even if such a transfer-inspect-delete routine happens to be acceptable in a particu-
lar case, not only will it be difficult to choreograph, but also it will entail the creation
of several undesired lexical bindings and related choice points, as the dictionary is
necessarily accessed. Moreover, for reasons explained in the previous topic, the im-
plementation of one such routine can seldom be reused by similar semantic precondi-
tions on subgraphs.

Graph Editing and Nontrivial Maneuvers

If graph sensing is as restrained as described in the previous topic, graph editing fol-
lows closely, receiving the status of a mere side-effect. In fact, a relation can be con-
sidered erased once it has been explored in node transference, as it can never be ex-
plored again. However, more sophisticated operations are usually most welcome.
Consider, for example, a real LIBRAS generation case in which informers seemed to
neutralize the difference between English (i) “to keep something Xed” and (ii) “to X
something”, producing one single LIBRAS version reflecting (ii) more closely. One
actual translation pair was the following: 8

8 All real-case source sentences are originally in Portuguese. However, whenever the differ-

ences between English and Portuguese are not relevant, we show only English translations to
improve readability.

Flexibility, Configurability and Optimality in UNL Deconversion 185

source: We must keep water tanks closed!
target: [water tank must close-with-lid{objlidgend:flat}]{excl}

The problem here is that, in order to produce the same target sentence, the source
could as well be “We must close water tanks!”, which would actually bear a more
direct structural relation to the target. We managed to tackle this neutralization with
DeCo at the expense of the following rather awkward ad-hoc strategy:

1. add as many entries under UW “closed” as to replicate all the possible mappings of
UW “close”;

2. make sure that the features of these new entries would avoid their application on
trivial deconversion of UW “closed”;

3. make the entry under UW “keep” map into an empty token and contain some com-
mon verbal features that would trigger subject insertion and aggreement;

4. add one special feature to that entry triggering a complex procedure as follows:
5. explore the obj relation to insert the root cell of the object;
6. copy subject agreement information from the “keep” cell into the object cell;
7. prior to full object development, use the object cell as an anchor to transfer the

node accessible through the aoj relation, requiring the inserted cell to be a verb.
This new verb cell will be inserted either to the left or right according to its own
feature set, which should inform the required relative position of an object;

8. copy subject agreement information from the object cell into the verb cell;
9. develop the object fully;
10.copy object agreement information into the verb cell and so on.

Complex though it may seem, the description above is much simpler than the ac-
tual implementation, which involves subtle rule prioritizing and choreographing. It is
worth noticing that we needed to implement and activate a whole rule set alternative
to regular verb insertion rules. Were graph editing operations available in a decoupled
form, it would have been much neater to perform a purely semantic transformation as
depicted in Fig. 3 and next apply regular rules to the new root node. No ad-hoc en-
tries would have to be added to the dictionary then; on the other hand, an additional
semantic resource would be needed to map UW “closed” into “close”.

Fig. 3. Graph editing operation implementing the neutralization between “to keep something
Xed” and “to X something”

BEFORE AFTER

186 Jorge Marques Pelizzoni, Maria das Graças Volpe Nunes

Optimality

DeCo is strict in that (i) a solution is depth-first searched for and (ii) the first solution
found is the only one to be outputted. This is built in DeCo’s design and is acknowl-
edged to rule out any chance of defining a quality measure to optimize. Even if it
were possible to relax (ii) and have some external device eventually rank all the solu-
tions, DeCo would probably timeout when searching for alternatives, since failure by
timeout should always be enabled even for toy configurations, so many the created
choice points usually are.

Therefore, all such concepts as models of conciseness/readability/etc. (see e.g.
Eddy [8]) or Optimality-Theoretical soft constraints are rendered inapplicable. How-
ever, it is possible to implement simple rules of thumb locally to decide whether a
constituent (e.g. a relative clause) should be generated now in a position, now in
another based e.g. on its length. Unfortunately, this requires some nontrivial pro-
gramming and risks so much backtracking as to lead to timeout. DeCo would have to
be instructed to (i) generate the whole constituent first in one position, suitably delim-
ited by special markers; (ii) check the size constraint on the basis of those markers;
and, if the constraint were not satisfied, (iii) force failure in order eventually to try
alternative rules starting generation in a different position.

4.2 Architectural Limitations

As a piece of software design, DeCo’s architecture is perfectly closed in that at no
time can user-defined modules aid deconversion. In other words, neither dictionary
entries nor rules can refer or resort to any entity whatsoever outside the standard
system, which can be a serious limitation to some applications. For a start, even if
graph editing facilities were available, the semantic neutralization scheme exempli-
fied in the previous section could not be implemented in this scenario, as it requires a
special semantic resource to map e.g. UW “closed” into “close”.

However, the need for interoperability becomes patent when one take into account
that at times the source UNL graph may lack pieces of information essential to qual-
ity or even grammatical deconversion. This situation is frequent when LIBRAS is the
target language. Sometimes a UW is just too general, like “cut”, which simply has no
direct translation. LIBRAS “cut” signs necessarily incorporate an instrument; there-
fore, there are only specific signs such as cut-with-a-knife, cut-with-scissors,
cut-with-a-saw and so on. It is worth noticing that mistranslation would lead then to
ungrammatical, unintelligible or at least seriously misleading sentences. Hence the
need for a semantic resource to answer such queries as “With which instrument is X
usually cut?”

In some cases, even a knowledge base, which could suffice for answering most
such queries, is not enough. Take grammatical number in LIBRAS for example,
which may assume as many as five values, namely singular, dual, trial, quadral and
plural. According to current UNL codification standards, there is rather likely to be a
simple node with attributes @def (definite) and @pl (plural) actually referring to a
group of entities already mentioned by some preceding UNL graph in UNL-encoded
text. Moreover, it may well be the case that the actual cardinality of the group has
been made explicit in that or yet another previous reference. If so and the current

Flexibility, Configurability and Optimality in UNL Deconversion 187

sentence presents any kind of person agreement, then this cardinality – in the form of
a corresponding number value – will be paramount to producing a sound LIBRAS
version. Due to DeCo’s closed architecture, there is no chance it would do anything
but blindly guess in such a situation.

It is actually a non-issue here what the exact nature of such external devices should
be. What is required is that a deconversion engine should be able to query them, and
developers should be free to develop and employ any number of devices necessary in
a specific application. To mention one less usual example, in our Portuguese-
LIBRAS translation project, named PUL∅ (Portuguese-UNL-LIST DeOralizer), we
intend to overcome such accuracy-demanding challenges as mentioned above by
resorting to human aid, though strictly non-specialized in that only required to be
proficient in the source-language (Portuguese). This means PUL∅ withdraws from
real-time translation and resigns its operation to what we call edition (i.e. pre-
publishing) time.9 Therefore, in addition to a minimized knowledge base, PUL∅’s
deconversion engine shall query an interactive device which, whenever necessary,
should reply on the basis of a human editor’s answers to questions elaborated on the
fly.

5 Meet Manati

Manati is the linguistic realization engine all UNL-LIST conversion in PUL∅ is
based on. In other words, PUL∅ includes a configuration of Manati, i.e. a module
obtained by fixing Manati’s parameters. It should be clarified at once that Manati,
much unlike DeCo, is not an application, but a software framework or simply a
library to serve as a foundation for UNL deconversion modules/systems. This should
not be regarded as a disadvantage, actually being particularly favorable to interop-
erability. For example, auxiliary devices external to Manati, such as user prompts or
knowledge bases, can be directly built in the final application; and the power of a
full-fledged programming language is available to help handle complex translation
procedures. The framework is fully implemented in Oz (www.mozart-oz.org [14,
17]) and heavily draws upon the expressiveness and elegant, seamless multiparadigm
integration of this language to meet its requirements. The following description as-
sumes some familiarity with the terminology of higher-order, constraint and espe-
cially object-oriented programming.

Manati10 is undoubtedly DeCo’s child. The parentage is not only historical – as it
was only after experimenting with DeCo that Manati could be conceived, and it is in
DeCo’s shortcomings that one can find much of Manati’s rationale – but also concep-
tual. Several features embryonic in DeCo have been generalized and above all de-

9 Taking into account how rare and costly bilingual human translators are in this case, one can

easily understand how reasonable this tradeoff is.
10 Manati is named in honor of its idol and definitive evolution-perfected form, the legendary

Babel Fish [1], which feeds upon mixed-up brain-wave energy and absorbs all but inten-
tional linguistic thought. Just as manatis are not really fish, Manati is not a Babel Fish and
strives to digest the UNL into one target language at a time.

188 Jorge Marques Pelizzoni, Maria das Graças Volpe Nunes

coupled in Manati. Manati’s lexicon-driven delegation model is perhaps the most
outstanding of its resemblances to DeCo, although each lexicon entry now states not
simply a mapping, but rather a translation rule triggered by a UW. Each rule covers
an arbitrary subgraph, inspects and changes the input graph at will, builds an arbitrary
portion of the output and eventually delegates the translation of other adjacent sub-
graphs by invoking translation rules for boundary nodes via the lexicon.

Manati takes decoupling seriously. The very concept of a translation rule is not
atomic, being the crossing of four orthogonal concepts – semantic precondition, syn-
tactic mapping, governor-governee constraints and linear precedence constraints –
each of which are implemented separately by four distinct class hierarchies. Rules are
obtained by combining classes from these hierarchies interchangeably. At all times,
class definition is supported by high-level constructs, e.g. syntactic dependency trees
[7] and morphosyntactic feature structures in syntactic nodes. It follows that Manati
produces highly-structured output, which, nonetheless, can straightforwardly be
printed out as a sentence.

Efficiency and optimality are also major concerns. The ultimate goal of configur-
ing Manati is instruct it to derive a low-level constraint satisfaction problem (CSP)
description, effectively exploiting propagation, when it is fed with input. Naturally, a
quality measure should integrate the derived CSP; and search for an optimum solu-
tion is carried out as usual in constraint programming. This programming paradigm
was chosen due to its potential to reduce search dramatically. Its application in con-
junction with the dependency tree formalism follows work by Duchier [4][5] & De-
busmann [7], which focused on parsing. Their research also inspired Koller & Strieg-
nitz’s generation work [9], which is, however, fundamentally distinct from ours in
that it strictly focuses on taming flat semantics, a non-issue here.

5.1 Parameters

Manati currently allows the rationalized configuration of ten orthogonal parameters
in that independently and modularly defined, namely:

1. input formalism, which, even though restricted to hypergraph types, is free to
accept any open set of UWs (node labels) and closed set of relations (edge labels);

2. morphosyntax: each part of speech (POS) in the target language must be defined
as a record with arity {avm, constr}, where feature avm is an attribute-value ma-
trix (AVM) type, and constr, a constraint on instances of avm. Whenever a mor-
pheme M is generated with part of speech P, then M.feats denotes a unique mor-
phosyntactic feature structure for which:

M.feats ∈ P.avm ∧ P.constr(M.feats)

holds. Furthermore, given that M.roles denotes the actual label set of all syntactic
relations having M as a governor, the invariants:

M.feats.reqComps ⊆ M.roles
M.roles ⊆ M.feats.reqComps ∪ M.feats.optComps

Flexibility, Configurability and Optimality in UNL Deconversion 189

also hold, meaning that POSs must necessarily define at least features reqComps,
specifying required syntactic relations (as to complements), and optComps, speci-
fying optional ones (as to adjuncts).

POS declaration in Manati is extremely user-friendly, allowing inheritance hier-
archies and expressiveness in defining AVM types building on work by Duchier et
al. [6]. Attribute types can be any of (i) atom from a finite domain, (ii) set of atoms
from a finite domain, (iii) the cartesian product of such sets or (iv) nested AVM.
The contsr features of POSs have intuitive notational support (also due to Duchier
et al.) and are useful when stating e.g. that a given set of nouns/verbs imply spe-
cific gender/tense;

3. syntactic mapping: a specific mapper class hierarchy must be provided in order
exclusively to specify the mapping of UNL (hyper)graphs onto syntactic depend-
ency trees in the target language. Roughly speaking, mappers simply convert (i)
semantic nodes into lexemes (classes of lexical items) and (ii) semantic relations
into syntactic roles; or, in Natural Language Generation jargon, they are responsi-
ble for lexical choice and aggregation [13]. It is worth noticing that mappers are
not interested either in morphosyntatic constraints, such as agreement, or in final
linear ordering of morphemes.

During generation, according to information in the lexicon (see below), a set of
mutually exclusive mappers are instantiated for the global UNL entry node Src.
Each mapper (i) tries to recognize a specific subgraph of its own starting at Src,
performing whatever necessary semantic checking on candidate nodes, (ii) creates
a set of syntactic nodes (usually corresponding to target language words) and (iii)
establishes binary syntactic relations between them. Some of the nodes in (ii) may
be created by means of recursively applying the same process to some of the
source nodes in the subgraph recognized in (i), as mappers always yield exactly
one syntactic root node. In time, the root received by a mapper as a result of recur-
sion might actually be a selector node choosing from the root set of several mutu-
ally exclusive subtrees produced by alternative mappers.

If the mapper class hierarchy is well-defined and correctly employed in the lexi-
con, the process sketched above will traverse the source UNL graph tree-wise from
its global entry. For more complex operations such as generating relative clauses
and dealing with coordination – or sometimes simply to avoid infinite cycling –
some input formalisms (and UNL flavours) require that mappers be able to edit
source hypergraphs. The edit operations available are node insertion and edge de-
letion and insertion. In any case, however, changes by a mapper are only visible to
itself and the mappers it creates recursively;

4. mapping preconditions: in order to optimize resource usage during search, part
of if not all precondition checking in mappers can optionally be delegated to a spe-
cific class hierarchy. Such so-called precond classes are associated with mappers
by lexicon data. See “lexicon” below for details;

5. governor-governee constraints: a specific class hierarchy must be provided in
order exclusively to tell morphosyntactic constraints on each pair of syntactically
related target nodes (i.e. words or morphemes). Such so-called gamma classes are
associated with mappers by lexicon data and have methods of the signature

190 Jorge Marques Pelizzoni, Maria das Graças Volpe Nunes

Role(Parent.feats Child.feats) invoked for each syntactic relation Role their corre-
sponding mappers establish between any target nodes Parent (governor) and Child
(governee);

6. linear precedence: a specific class hierarchy must be provided in order exclu-
sively to determine the final ordering of target nodes and carry out whatever fur-
ther tasks that might occasionally be required on mapper completion, when all di-
rect child nodes are accessible – though not as yet fully determined – for e.g. tell-
ing further constraints. Such so-called finishUp classes tackle linear precedence by
telling constraints relating target nodes to each of their children and siblings to
each other. Order constraints, though definable at various levels of abstraction, ul-
timately operate on features roots and yield of nodes or role bundles – a simplified
interface to all siblings filling one same syntactic role. Feature roots denotes a set
containing either the absolute position of a node within the generated text or the
union of all roots features of the siblings in a role bundle. Feature yield denotes the
union of either all roots in the subtree rooted at a node or all yield features of the
siblings in a role bundle. If needed, role bundles also give access to each “bun-
dled” sibling individually.

Following Duchier & Debusmann [7], ultimate control over linear precedence is
provided by constraints operating also on topological fields. The concept involves
axiomatizing a topology of the yield of a syntactic tree, i.e. a partition P[i] such
that:

∀x,y,i,j (x ∈ P[i] ∧ y ∈ P[j] ∧ i < j→ x < y).

Each partition element P[i] is said a topological field. Manati allows absolute
flexibility in axiomatizing topologies, including the possibility of nesting, one to-
pology holding for an entire tree unless a mapper overrides it for subtrees. Nested
topological fields can be unified with those in an overridden topology granting
finer-grained overriding control.

Topologies provide for long-distance “movements”, topicalization, nested
clauses and the generation of multiple sentences from a single source graph11,
which is essential for Libras generation;

7. any number of oracles – e.g. user prompts, knowledge bases, etc. – to resort to at
virtually any generation stage. Oracles are services running concurrently and ac-
cepting asynchronous requests. The sole requirements on oracles are (i) requests
must be ground, i.e. involving no unbound variables, and (ii) responses must be ei-
ther ground or finite domain variables (in some commonly agreed protocol, e.g.
0/1 meaning true/false) eventually to be determined by oracles themselves;

8. lexicon: Manati’s lexicon is more of a translation rule base, each of whose en-
tries is a tuple (UW, TransList, POS, Precond, Mapper, Gamma, FinishUp), where
UW is a source node label; TransList, a character string list of possible target lan-

11 Notice that it is always possible to define a rightmost/leftmost topological field to contain

trailing/preceding text.

Flexibility, Configurability and Optimality in UNL Deconversion 191

guage translations; POS, the part of speech of the elements of TransList; and Pre-
cond, Mapper, Gamma and FinishUp, classes of the homonymous types.

When the translation of a source node is required, its label is used to search the
lexicon for eligible transfer rules. For each rule, Precond is activated, performs
specified checking and, iff TransList has more than one element, must select ex-
actly one of its elements to be the translation word of the rule. TransList may as
well be empty, but then the definition of a translation word is left to Mapper,
which hinders code reuse and search efficiency. The null word is also possible,
creating an invisible syntactic node and enabling null categories.

From this point on, Manati attempts to optimize the application of constraint
programming by instantiating one single mapper for each set of so far successful
rules sharing the same Mapper class. Each mapper receives a default syntactic tar-
get node constructed from the data remaining in its originating set of rules, i.e.
translation words, POSs, Gammas and FinishUps. This is actually a complex two-
level selector node built with the powerful Oz selection constraints. It is up to each
mapper to decide what to do with its default target node: (i) simply ignore it (not
wasteful due to lazy evaluation) or (ii) use it as a final target to receive children or
likewise (iii) as part of any arbitrary syntactic structure it may build;

9. output formalism, i.e. how the resulting syntactic trees are to be printed out. This
is highly configurable ranging smoothly from raw lists of target language words to
fully structured trees by means of user-defined bracketing. Words and bracketed
groups may be associated with arbitrary Output AVMs (OAVMs) created by Fin-
ishUp classes. OAVMs may be useful to add syntactic and prosodic annotations
(as required by PUL∅) or even to output morphologic features, leaving full inflec-
tion of words to dedicated modules and thus downsizing the lexicon. These are the
facilities that allow the generation of prosodic groups and AVMs in LIST;

10.quality measure, in the form of a binary constraint Q that, during search, is itera-
tively imposed on pairs (CurBest, Wannabe), where CurBest is the best fully de-
termined solution so far, and Wannabe is a partially determined solution which
will attempt to be even better than CurBest. In fact, it is exactly Q that should give
Wannabe a drive to supersede by strictly constraining it to be better. As CurBest
and Wannabe are given as the roots of their respective syntactic tree solutions, and
Wannabe is not yet fully determined, which rules out direct access to its subtrees,
constraint Q should relate both solutions solely on the basis of their roots. There-
fore, for complex quality measures, developers are expected to include quality-
related features in POSs (see “morphosyntax” above) and have them propagate up
the tree by means of special constraints in gamma and finishUp classes.

So far we have only experimented with minimizing output length in words. This
is especially interesting to LIBRAS generation because it is rather often the case
that two or more distinct words can actually be combined into a single preferred
one. As Manati provides every node with feature yieldCard, denoting the cardi-
nality of its word yield,12 this quality measure is optimized by a simple procedure
LengthOrder as follows:

12 The word yield of a node is the subset of its yield that actually corresponds to target language

words, which excludes null categories and bracketed block nodes.

192 Jorge Marques Pelizzoni, Maria das Graças Volpe Nunes

proc {LengthOrder CurBest Wannabe}
 Wannabe.yieldCard <: CurBest.yieldCard
end

where X <: Y is not the usual comparison operation, but rather a constraint, telling
that X < Y should always hold. Other measures are usually of interest to systems
relying on e.g. heavy content selection and advanced referring expression genera-
tion, which are almost absent in PUL∅ since these tasks are satisfactorily per-
formed by source text authors to current standards. Alternatively, if one is inter-
ested in the very first solution only, it suffices to provide the following even sim-
pler constraint:

proc {FirstWillDo _ _}
 fail
end

5.4 Searching for a Global Optimum

Deconversion starts by applying translation rules to the global UNL entry node. In
spite of involving some pattern matching and search, this corresponds to model crea-
tion only and yields a complex partially determined syntactic tree, whose distinct
potentialities are modelled by occasional higher-order selector nodes choosing from
(the roots of) a set of subtrees. In addition to yieldCard, every node has two further
important features affected by constraint propagation, namely: id, denoting its abso-
lute position in the generated text, and active, denoting an encoded boolean telling
whether the node actually takes part in the current solution or is discarded. Every
higher-order selector node has at most one active selectable root at a time and is ac-
tive iff it has exactly one such root. If so, that root becomes selected, which makes its
features (id, active, yieldCard, etc.) and those of the selector coincide. Finally, all
other nodes are actually first-order selectors choosing from a list of alternative tar-
get language words, for which reason they have an additional lexI feature, denoting
the index of the word of choice.

Manati’s search script is just like any ordinary Oz script and is executed in cycles
of constraint propagation followed by domain distribution until a solution is found. It
reads as follows:

1. distribute over the vector of all active features, prioritizing (i) activation over deac-
tivation and (ii) elements in order of appearance, which roughly corresponds to the
order in which translation rules appear in the lexicon;

2. ActiveNds ← list of all active first-order selector nodes. The notation List.Feature
used in subsequent steps denote the vector obtained by selecting Feature for each
item in List;

3. tell ∀Id ∈ ActiveNds.id: dom(Id) ⊆ {1 … length(ActiveNds)};

4. distribute naïvely over ActiveNds.lexI, i.e. trying lower values first;

5. distribute over ActiveNds.id using a first-fail strategy, i.e. prioritizing the distribu-
tion of the most constrained ids as an heuristic to rule out failed choices first and
thus minimize their impact on search;

Flexibility, Configurability and Optimality in UNL Deconversion 193

6. if a fully determined solution CurBest is found, try to improve it by starting over
with a fresh model Wannabe and ensuring that Q(CurBest,Wannabe) should hold,
for a given quality constraint Q.

6 Conclusions and Future Work

We have scrutinized DeCo and demonstrated that some of its features are likely to
hinder productivity and quality in deconverter development. These features can be
summarized as strong coupling of concepts, lack of generality, low level of abstrac-
tion and no support for modularity, abstraction, optimality or interoperability.

As a first attempt to overcome these shortcomings, we have presented the first
draft of Manati, an alternative linguistic realization/UNL deconversion engine.
Manati heavily draws on constraint programming as a means to reduce search; while
object-oriented and higher-order programming provides a basis for defining friendly
primitives with which (i) to fill the blanks (i.e. parameters) of a configuration at ap-
propriate levels of abstraction and (ii) automatically to derive a low-level constraint
satisfaction problem (CSP) description, effectively exploiting propagation, when a
configuration is eventually fed with input.

Manati is currently being configured to generate the Brazilian Sign Language and
shall be evaluated against other linguistic realization engines in the near future.
Scheduled further work on Manati includes full coverage of generation tasks [13] –
e.g. content selection – and experiments with different quality measures. Addition-
ally, as our experience of applying Manati in real-case scenarios increases, we expect
to produce even higher-level abstractions building on Manati’s current facilities.

Acknowledgements This project has been partially funded by MEC (the Brazilian
Ministry of Education). We would like to thank Prof. Dr. Tanya Amara Felipe (UPE
– Universidade de Pernambuco) and her team for providing the LIBRAS versions of
this article.

References

1. Adams, D. The Hitchhiker's Guide to the Galaxy. Ballantine Books, 1995 (reissue edition).
2. Brito, L. F. Por uma Gramática de Línguas de Sinais. Tempo Brasileiro Ed., Departamento

de Lingüística e Filologia, Universidade Federal do Rio de Janeiro, 1995.
3. Cahill, L. and Reape, M. Component tasks in applied NLG systems. Technical Report ITRI-

99-05, Information Technology Research Institute (ITRI), University of Brighton, 1998.
http://www.itri.brighton.ac.uk/projects/rags.

4. Duchier, D. Configuration of labeled trees under lexicalized constraints and principles,
Journal of Language and Computation, 2002.

5. Duchier, D. Axiomatizing dependency parsing using set constraints. In Proceedings of the
6th Meeting on the Mathematics of Language, USA, 1999.

6. Duchier, D., Gardent C., and Niehren J. Concurrent Constraint Programming in Oz for
Natural Language Generation. http://www.ps.uni-sb.de/~niehren/Web/Vorlesungen/
Oz-NL-SS01/vorlesung (accessed on Aug. 2004).

194 Jorge Marques Pelizzoni, Maria das Graças Volpe Nunes

7. Duchier, D. and Debusmann, R. Topological dependency trees: A constraint-based account
of linear precedence. In Proceedings of the Association for Computational Linguistics
(ACL), France, 2001.

8. Eddy, B. Toward balancing conciseness, readability and salience: an integrated architec-
ture. In Proceedings of the International Natural Language Generation Conference
(INLG’02), 2002.

9. Koller, A. and Striegnitz, K. Generation as Dependency Parsing. In Proceedings of the
Association for Computational Linguistics (ACL), 2002, 17-24.

10. Martins, R. T., Rino, L. H. M., Nunes, M. G. V., and Oliveira Jr., O. N. The UNL distinc-
tive features: evidences through a NL-UNL encoding task. In Proceedings of the First In-
ternational Workshop on the UNL, other Interlinguas and their Applications, 2002, 08-13.

11. Martins, R. T. A Língua Nova do Imperador. Ph.D. Thesis, Instituto de Estudos da Lingua-
gem, Universidade Estadual de Campinas (UNICAMP), 2004.

12. Paiva, D. A survey of applied natural language generation systems. Technical Report ITRI-
98-03, Information Technology Research Institute (ITRI), University of Brighton, 1998.
http://www.itri.brighton.ac.uk/techreports.

13. Reiter, E. and Dale, R. Building Natural Language Generation Systems. Cambridge Uni-
versity Press, 2000.

14. Schulte, C. Programming Constraint Services: High-Level Programming of Standard and
New Constraint Services, Lecture Notes in Computer Science Series, Springer-Verlag,
2002.

15. Speers, d’A. L. Representation of American Sign Language for Machine Translation. PhD.
dissertation, Graduate School of Arts and Sciences, Georgetown University, 2001.

16. Stone, M. and Doran, C. Sentence planning as description using tree-adjoining grammar. In
Proceedings of the Association for Computational Linguistics, 1997, 198-205

17. Van Roy, P. and Haridi, S. Concepts, Techniques, and Models of Computer Programming,
MIT Press, 2004.

18. Uchida, H., Zhu, M. and Della Santa, T. UNL: A Gift for a Millennium. Institute of Ad-
vanced Studies, University of the United Nations, 1999. http://www.undl.org/publications.

