
An Overview of Probabilistic Tree Transducers for
Natural Language Processing

Kevin Knight and Jonathan Graehl

Information Sciences Institute (ISI) and Computer Science Department
University of Southern California

knight@isi.edu, graehl@isi.edu

Abstract. Probabilistic finite-state string transducers (FSTs) are extremely pop-
ular in natural language processing, due to powerful generic methods for ap-
plying, composing, and learning them. Unfortunately, FSTs are not a good fit
for much of the current work on probabilistic modeling for machine translation,
summarization, paraphrasing, and language modeling. These methods operate di-
rectly on trees, rather than strings. We show that tree acceptors and tree transduc-
ers subsume most of this work, and we discuss algorithms for realizing the same
benefits found in probabilistic string transduction.

1 Strings

Many natural language problems have been successfully attacked with finite-state ma-
chines. It has been possible to break down very complex problems, both conceptually
and literally, into cascades of simpler probabilistic finite-state transducers (FSTs).
These transducers are bidirectional, and they can be trained on sample input/output
string data. By adding a probabilistic finite-state acceptor (FSAs) language model to
one end of the cascade, we can implement probabilistic noisy-channel models. 1 Fig-
ure 1 shows a cascade of FSAs and FSTs for the problem of transliterating names and
technical terms across languages with different sounds and writing systems [1].

The finite-state framework is popular because it offers powerful, generic operations
for statistical reasoning and learning. There are standard algorithms for:

– intersection of FSAs
– forward application of strings and FSAs through FSTs
– backward application of strings and FSAs through FSTs
– composition of FSTs
– k-best path extraction
– supervised and unsupervised training of FST transition probabilities from data

1 In the noisy-channel framework, we look for the output string that maximizes P(output � input),
which is equivalent (by Bayes Rule) to maximizing P(output) � P(input � output). The first term
of the product is often captured by a probabilistic FSA, the second term by a probabilistic FST
(or a cascade of them).


