
Building and Using

a Russian Resource Grammar in GF

Janna Khegai and Aarne Ranta

Department of Computing Science
Chalmers University of Technology and Gothenburg University

SE-41296, Gothenburg, Sweden
{janna, aarne}@cs.chalmers.se

Abstract. Grammatical Framework (GF) [5] is a grammar formalism
for describing formal and natural languages. An application grammar
in GF is usually written for a restricted language domain, e.g. to map
a formal language to a natural language. A resource grammar, on the
other hand, aims at a complete description of a natural languages. The
language-independent grammar API (Application Programmer’s Inter-
face) allows the user of a resource grammar to build application gram-
mars in the same way as a programmer writes programs using a stan-
dard library. In an ongoing project, we have developed an API suitable
for technical language, and implemented it for English, Finnish, French,
German, Italian, Russian, and Swedish. This paper gives an outline of
the project using Russian as an example.

1 The GF Resource Grammar Library

The Grammatical Framework (GF) is a grammar formalism based on type theory
[5]. GF grammars can be considered as programs written in the GF grammar
language, which can be compiled by the GF program. Just as with ordinary
programming languages, the efficiency of programming labor can be increased by
reusing previously written code. For that purpose standard libraries are usually
used. To use the library a programmer only needs to know the type signatures
of the library functions. Implementation details are hidden from the user.

The GF resource grammar library [4] is aimed to serve as a standard library
for the GF grammar language. It aims at fairly complete descriptions of different
natural languages, starting from the perspective of linguistics structure rather
the logical structure of applications. The current coverage is comparable with,
but still smaller than, the Core Language Engine (CLE) project [2].

Since GF is a multilingual system the library structure has an additional
dimension for different languages. Each language has its own layer, produced by
visible to the linguist grammarian. What is visible to the application grammarian
is a an API (Application Programmer’s Interface), which abstracts away from
linguistic details and is therefore, to a large extent, language-independent. The
module structure of a resource grammar layer corresponding to one language is
shown in Fig. 1. Arrows indicate the dependencies among the modules.


