On Integration of Parsing and
Tree Matching Schemes

M. Vilares Ferro
D. Cabrero Souto
F.J. Ribadas Pena

In this paper, we present a proposal intended to demondtrat@pplicability
of tabulation techniques to pattern recognition problemvBen we deal with
structures sharing some common parts. This work is motivatethe study of
information retrieval for textual databases, using pattatching as a basis for
querying data.

To attain this goal, we study the existing relationship leswparsing schema and
tree-to-tree correction in a dynamic programming frame a4ssult, we describe
an algorithm that efficiently profits from sharing in syntadtructures.

1 INTRODUCTION

One critical aspect of an information system is indexingi th, the representation
of concepts to get a well formed data structure for searchil kdmently, this task
was accomplished by creating a bibliographic citation teérences the original
text. This approach allows a reduction in time and space d&ualthough it
does not facilitate the user from finding relevant inforrati In effect, it is the
combination of the words and their semantic implicatiora ttontain the value of
these concepts, which leads us to more sophisticated irgerIentations, such
as context-free grammars. This information is inherenbhéndocument and query.
So, matching becomes a possible mechanism to extract a comaitern from
multiple data and we could use it for indexing and queryingiarmation retrieval
systems.

However, the language intended to represent the documenbften only be

approximately defined, and ambiguity arises. So, it is coiaré to merge parse
trees as much as possible into a single structure that atteews to share common
parts. Queries could also vary from the indices and an appeig matching

strategy becomes necessary. At this point, our aim is tooeéxgtructural sharing
during the matching process in order to improve performsance

2 A DYNAMIC FRAME FOR PARSING

We introduce ¢Ee [Vilares & Dion 1994], a parsing frame in dynamic
programming. Our aim is to parse sentences in the langagé generated by
a context-free grammat = (N, X, P, S), whereN is the set of non-terminalg;
the set of terminal symbols? the rules ands the start symbol. The empty string
will be represented by.

21 Theoperational model

We assume that, using a standard technique, we prodpashadown automaton
(PDA) from the grammag. In practice, we choselaLR (1) device, possibly non-
deterministic, which will allow us to improve sharing of cpuatations. Formally,
aPDA can be represented as a 7-tugle= (Q, %, A, d,qo, Zo, Qf) where: Q is
the set of statesy. the set of input symbolsA the set of stack symbolg, the
initial state, Z, the initial stack symbolQ; the set of final states, antda finite
set of transitions of the form X a — ¢ Y with p,q € Q,a € ¥ U {¢} and
X, Y e Au{e}.

Let thepPDA be in a configuratiorip, X v, ax), wherep is the current stateX « is
the stack contents witll on the topaz is the remaining input where the symbol
a is the next to be shiftedy € ¥*. The application o X a — ¢ Y results
in a configuration(q, Y «, z) where the terminal symbal has been scanned;
has been popped, arid has been pushed. If the terminal symhois ¢ in the
transition, no input symbol is scanned. Xf is € then no stack symbol is popped
from the stack. In a similar manner, ¥f is ¢ then no stack symbol is pushed on
the stack. In the case of ambiguous recognition, severdl saasitions can be
applied.

| n c]current state
| .
- . nil
X X
| |y A 5.5] gES : EX .
push goto pop on
a Nl It 1,=[Py. X4, Sp. S d il | 9] Kl
generallon
: H ' of Td H
1=[P.a S, 8] || RULE n:A—> X Xp - XX, | \—/
| I =[Py X¢s Ser =
The case of a shift. The case of a reduce, 't 1Pt Xtr Siar & applcation of T,
Node generation in | CE Dynamic transitionsin | CE

Figure 1: Node generation and dynamic transitiond @e

We proceed by buildingtems compact representations of the recognizer stacks.
New items are produced by applying transitions to existingsp until no new
application is possible. We associate a set of iteffis called itemset for the
symbolw; at the positiony in the input string of length, w1 _,.

An item has the fornip, X, S7, Si’], wherep is aPDA state, X is a stack symbol,
S¥ is theback pointerto the itemset associated to the input symibglat which
we began to look for that configuration of the automaton, &fidis the current
itemset. A merit ordering technique guarantees fairnedscampleteness, while
operations may add more items to the current itemset and teaypat items in
the itemset corresponding to the following token to be aedyfrom the input
string. To ignore redundant items we use a simple subsumpgiation based on
the equality.

2.2 Theparser

We represent a parse as the chain of the context-free rubxb insa leftmost
reduction of the input sentence [Vilares & Dion 1994], ratti&n as a tree. When
the sentence has distinct parses, the set of all possilde phrins is represented
in finite shared form by a context-free grammar that gensithigt possibly infinite
set. Context-free grammars can be representedNiy-OR graphs that in our
case are precisely the shared-forest graph. In this grapb;nodes correspond
to the usual parse-tree nodes, wldlr-nodes correspond to ambiguities. Sharing
of structures is represented by nodes accessed by more riieaotlzer node and
it may correspond to sharing of a complete subtree, but dladrgy of a part of
the descendants of a given node, in fact, a consequence lbiduy nature of the
transition protocol previously described. This featudeves to prove [Vilares &
Dion 1994] that time complexity for the parser is, in the warase,O(n?) when
the length of the input string is. Space complexity is, also in the worst case,
O(n?).

Items are used as non-terminals of an output gram@gar (N,,>,, P,, S,),
whereN, is the set of all itemss:, the set of input symbols of the original grammar
G, and the rules i, are constructed together with their left-hand-side iteby
the parsing algorithm. We generate a rule for the output grameach time a
reduce or a shift action from the grammar defining the langua@pplied on the
stack, as shown in Fig. 1. The start symlsfl is the last item produced by a
successful computation.

We build apush-down transduceirpT), 7g = (Q, %, A,1L, 6, g0, Zo, Qy), from
our PDA model augmenting it with a componeHitrepresenting the set of output
symbols, and considering transitions dnof the formp X a — ¢ Y wu with
p,qg € Q,aeXU{e}; X,Y € Au{e}, andu € TI*.

Givent = §(p, X,a) > (q,Y, u), we translate it to items of the following form:

1. 6(p,X,S",S",a) > (lg,e,5",5"]¢€) if v
2. 4(lp,X,SP.S¥La) > ([p.Y,S¥,S41], 1o — a) if Y=a
3. d(p,X,S’,S",a) > (pY,S", S, 1 = I») if YeN
4. o(p,e, 8P, S¥,a) > dallg,e, S, S),a) 3 ([q,6,51, S¥), Is — II5) if Y =¢
Vq € Q such thatd §(q, X, ¢) 3 (p, X, €)
with: §: 1t x YU {e} — {ItUdy} x IT* ba:ltxTU{e} — It
and

I(] = [p7 Y7 S;l)vsgil] Il = [p7Y7 S;U:S;U] 12 = [p:X7 S;U:S;U]
I; = [q767slw75iw] I, = [Q',‘Y: Slw,S;U] I5 = [p,E,S;U,Szw]

wherelt is the set of all parse items adglis called the set aflynamic transitions
Succinctly, we can describe the preceding cases as follows:

1. A goto action from the stateto stateq under transitionX in the LALR (1)
automaton.

2. A push of terminak from statep. The new item belongs to the next itemset
Sit1-

3. A push of non-terminal” from statep.

4. A pop action from state, whereq is an ancestor gf under transitionX .
In this case, we do not generate a new item, bdy@amic transitionr,; to
treat the absence of information about the rest of the stHuis. transition is
applicable to the configuration resulting of the first ond,dso on those to
be generated and sharing the same syntactic structurepws ghFig. 1.

3 A DYNAMIC FRAME FOR APPROXIMATE TREE
MATCHING

We introduce the Zhang and Shasha’s approach [Zhang & ShES8Q] to
determine the distance between two trees as measured byutheen of edit
operations needed to transform one tree into the other.

3.1 Theoperational model

Given trees, 7y and T,, we define aredit operationas a paira — b, a €
labelgTy) U {e}, b € labelgTy) U {e}, (a,b) # (e,e). Deleting a node:,
a — £, means making the children afbecome the children of the parentoénd

then removing:. Inserting,e — b, is the complement of delete. Changing a node,
a — b, means changing the nodelabel intob. Generic examples of such edit

operations are shown in Fig. 2.

Figure 2: Edit operations

Each edit operation has an associated cgpgt,— b), defined by a metrig, that

we can extend to a sequenSeof edit operationssy, ss, ..., s, in the form

v(S) = Zﬁh (v(s;)). Formally, the distance betwe&h andT; is defined by the
metric:

(T, Ty) = min{y(S), S editing sequence taking; to T,}

In order to simplify the computation @f Tai introduces in [Tai 1978] a particular
kind of edit sequences callettappings Given a treeT’, we shall consider a
postorder traversal to name each nadeniquely byT[i], as shown in the left-
hand side of Fig. 3. Then, a mapping frdfnto 7% is a triple (M, Ty, T5), where
M is a set of integer pair§i, j) satisfying, for eachl < i4y,io <| Ty | and
1<j1,52 <[Ta |:

i1 =19 iff j1 = jo (one-to-one)
T, [i1] is to the left of T} [io] iff T»[ji1] is to the left ofT5[js) (sibling order)
Ti[i1] is an ancestor df [i»] iff T»[j1] is an ancestor df»[jz] (ancestor order)

We show, in the right-hand side of Fig. 3, an example of mapdetween
two trees. The rightmost diagram includes a sequence ofogditations not
constituting a mapping. The cost(M), of a mapping(M, T}, T») is computed
from relabeling, deleting and inserting operations, aeWs:

V(M) = > A(Tifi) = Tolf]) + D y(Thfi] =€) + Y (e = Tu[4])
(i,j)eM ieD jeT

where D and 7 are, respectively, the nodes Iy, and 73 not touched by
any line in M. Tai proves, given treedy and T, that §(71,1) =
min{y(M), M mapping from T} to T}, which allows us to reduce the
computation effort, focusing only on edit sequences beingapping.

/'a& T[L.8] T[6.9]

b, cf dc;' b c h i d m /j:\d
NG NG AN N LN
e f-gh i e f g j h i -f e
1 2 4 6 ‘ ‘ /\\ >< ‘

i j g .9
7 e
Postorder traversal of a tree. An example on mappings.

Figure 3: Postorder traversal and mappings

3.2 Thealgorithm

A major characteristic of the Zhang and Shasha’s algoritenits bottom-up
oriented approach. The minimum cost mapping between twesau different
trees depends only on mapping the nodes and their childreme Bkactly, given
thel_keyroot$T'), the set of all nodes ifi" which have a left sibling plus the root,
root(T"), of T'; the algorithm proceeds through the nodes determining mgpp
from all leaf Lkeyroots first, then all_keyroots at the next higher level, and so on
to the root.

We introducel (i) (resp. anc(i)) as the leftmost leaf descendant of the subtree
rooted at7; (resp. the ancestors @f) in a treeT’, andT'[i..j] as the ordered
subforest ofl" induced by the nodes numberetb j inclusive, as it is shown in the
left-hand side of Fig. 3. In particular, we ha¥#(i)..i] is the tree rooted &f'[i].

We define thdorest edition distancas a generalization @f, in the form

forestdist(T1 [’l] ..’ig], T [_]] jg]) = 5(T1 [Z] ..'Z'QL T [_]] jQD

that we shall denotéorestdist(i; ..is, j1..5j2) When the context is clear. Intuitively,
this new concept computes the distance between two n@@gs] andTs[j2], in
the context of their left siblings in the corresponding $reehile the corresponding
tree distance) (71 [i2], T2 [j2]), IS computed only from their descendants.

Formally, we computdree dist(7;,7,) applying the formulas that follows, for
nodesi; € anc(i) andj; € anc(j), such as illustrated in Fig. 4, taking into
account the different cases we have that faddst(/(i1)..7,1(j1)..7) is:

{ TGy 194

16)-1

| treedist(i,j) = forestdist(I(i) .. i, 1() .. j)

10 #1G,) or 1G) #1G,)

forestdist(l(j) .. I()-L, 1G;) -. 1()-1)

Figure 4: The forest distance in Zhang and Shasha’s algorith

forestdist(1(i1)..i — 1, 1(j1)..5) + (T[] — e),
ming forestdist(l(i1)..3, I(j1)..7 — 1) + (e = Talj),
forestdist(l(i1)..i — 1, I(j1)..1 — 1) + ~(Th[i] = Ta[j])
iff (i) = 1(i1) and 1(5) = 1(ju)
forestdist(l(i1).. — 1, 1(j1)--7) + (T[] — e),
ming forestdist(l(i1)..3, I(j1)..7 — 1) + (e = Talj),
forestdist(l(i1)..1(s) — 1, 1(j1)..l(j) — 1) + treedist(s,)
otherwise

Now, to compute the distance betweEnandTs, it will be sufficient to take into
account that

treedist(Ty, T,) = forestdist(/(root(T}))..root(T}), I (root(Ts))..root(Ts))

It is important to remark that conditions of the tyigé) # /(i) (resp.l(j1) # ()
rely on nodes in_keyroot$7) (resp. nodes im_keyroot$75)), as it is also the
case ofroot(77) (resp. root(7y)). The time complexity of this algorithm is
O(ningmin(dy,ly)min(ds,ls)), and the space complexity 8(nin2), both in
the worst case, whereg is the number of nodes in the trég d; is the depth off;
andl; is the number of leaves iRy, i = 1, 2.

4 RELATING PARSING AND TREE MATCHING

The major question of previous related works [Zhang & Shak®B9], is the

tree distance algorithm itself. However, in dealing witliormation retrieval

often parsing and tree-to-tree correction are topololyicgalated. Typically, this

relation is the case when we deal with unrestricted natargjuage texts, including
ambiguous sentences, and the syntactic representatiohfarsendexing can be
composed by trees with some common parts. In this contegt,ntmber of

matching operations would be uselessly multiplied andisbaof data structures
and computations would save space needed to represeneéise ffo attain this
goal, we first need to isolate the factors at the origin ofcstn@l sharing.

4.1 Sharing of atail of sons

To get the best performance, it is necessary to understandhéthanisms that
cause the phenomenon of tree duplication. In this case,arsing framework is

interesting because it identifies syntactic and computagtouctures in the same
concept, the item.

@ g v s P B V% 5 P

Classic forest representation without sharing.

AN representation with sharing, AND-OR representati ith sharing,
for a bottom-up parsing. for a top-down parsing.

RULE n, : d— a BYd P 7
RULE N, : p—aBY%.dpP

Shared nodes using a bottom-up parser, with AND-OR graphs.

*\\\\\\\\\ Shared nodes using a top-down parser, with AND-OR graphs.

Figure 5: How shared forest are built using amD-0OR formalism

Given that actions on theDA depend on the first and possibly second elements in
the stack, the output grammar i dormone and sharing of a tail of sons in a node
of the resulting forest is possible. More exactly, bottopnparsing may share only
the rightmost constituents, while top-down parsing mayy atlare the leftmost
ones. This relies to the type of search used to built the foBagadth first search
results on bottom-up constructions and depth first seasthitsson top-down ones,
as it is shown in Fig. 5.

Taking into account that our parsing scheme is bottom-gptmost search of tree
constituents should be considered in order to take advarfitagn sharing achieved
during the parsing process.

4.2 Adapting the approximate tree matching strategy

One major observation we noted is that Zhang and Shashadeorssipostorder
traversal, computing the forest distance by left-recursio this search. Realizing
that our parser shares computations from right-to-leftcamtend that an efficient
integration of both algorithms requires to redefine the itgcture of the original

matching strategy.

To accomplish this change, nodes in a trewill be first numbered considering an
inverse postorder traversal, as shown in Fig. 6. We alsodnter_keyroot$7') as

the set of all nodes in a tré@ which have a right sibling plus the rootot(7"), of

T. And also we define(:) as the rightmost leaf descendant of the subtree rooted
atT; in atreeT'.

Da 4, T[1.8] T[1.4]
I
Obyoc, d, e f ¢ d d
AN LN 2N /N
Be f goh i, g h h
8 7 5 3

i
\
!
Figure 6: The forest distance using an inverse postorderimenng

From here, the alternative construction for the foresti@ditistance is analogous
to the original algorithm, as shown in Fig. 7. For a betteramthnding we shall
present the computations used with the inverse postordeen@eesT; and T,
and nodes,; € anc(i) andj; € anc(j), we have that forestlist(r (i1)..7, 7 (j1)..7)
is :

)..i—l, T(]])]) + ’Y(Tl[i] _>5): }
)iy r(j1)..5 — 1) + (e = Ta[j]),
)i—1,r(1).g—1) + ~y(Tali] = Ta[j])

forestdist(r (i

forestdist(r(i,

min 1
forestdist(r(iy

(

iff (i) = r(iy) and r(j) = r(j1)
forestdist(r(iy)..i — 1, 7(j1)--j) + y(Th[i] = #),
min< forestdist(r(iy)..i, 7(j1)..7 — 1) + (e = Tulj]),
{ forestdist(r(iy)..r(i) — 1, r(41)..r(j) — 1) + treedist(i,) }

otherwise
To computedreedist(T}, Ty) it will be sufficient to take into account that
treedist(T}, T,) = forestdist(root(Ty)..r (root(T})), root(Ty)..r(root(7T3)))

Lastly, time and space bounds are the same as in the classarger version.

,,E,[E],T,Tz,m,,u,“’ 1

T, [ty - 1)y A IrGy) - 101
; w1 i P
,,,,,,,,,, 0)0 S S SO 1
1 t
treedist(i,j) = forestdist(r(i) .. i, r(j) .. j)
r(i) # r(il) or r(j) # f(il) forestdist(r(i,) - r(i)-1, r(j) .. r()-1)

Figure 7: The forest distance in our proposal

5 APPROXIMATE MATCHING IN SHARED FOREST

Once we have motivated and formalized the adaptation ofssiclapproximate
matching approach to efficiently deal with bottom-up paseve now offer a
simple explanation about how both environments, parsingd, approximate tree
matching, can be integrated in practice.

To start with, letl’; be a labeled ordered tree, aifig an AND-OR graph, both of
them built using our parsing frame. We shall idenfifywith a query andl; with

a part of the syntactic representation for a textual dathdth a certain degree of
ambiguity. The presence ofR nodes ifl; has two main implications in our work:
Firstly, there will exist situations where we must handi@dianeous values for
some forest distances and, secondly, the parser may shagestaictures among
the descendants of the different branches imamode. We shall now present the
manner we calculate the distance between a pattern treehargkt of trees that
are represented within thevD-0OR graph, and how to take advantage of the shared
structures created by the parser.

Let 77 [i] be the current node in the inverse postorderforandi; € andi) a
r_keyroot. Given aror nodeT;[k] we can distinguish two situations, depending
on the situation of thi®R node and the situation of thekeyroots ofT5.

5.1 Sharingintoasamer _keyroot

Let 73[j'] andT5[5"] be the nodes we are dealing with in parallel for two branches,
labeled T [%'] and T,[k"], of the OR nodeT;[k]. We have that; € andj’) N
anc(j"), that is, the tree rooted at thekeyroot75[j;] includes theor alternatives
Tg[k/} andTQ[k”}.

Such situation is shown in Fig. 8 using a classic representatnd theAND-

OR graphs. Here, the part shaded in light color refers to nodessw distance
have been computed in the inverse postorder beforeotheode 75[k]. The
part shaded in dark color represents a shared structure. ndta¢ion ‘e e e”

in figures representingA\ND-OR graphs, expresses that we descend along the
rightmost branch of the corresponding tree.

We shall assume that nod@s[r(j') — 1] andTy[r(j") — 1] are the same, that
is, their corresponding subtrees are shared.1Sp,(j')] (resp. Ty[r(5")]) is the
following node inT; (k'] (resp.T[k"]) to deal with once the distance for the shared
structure has been computed.

At this point, our aim is to compute the value forestdist(r(i1)..i, 7(j1).-j), j €
{j', 7"}, proving that we can translate parse sharing on sharingrapatations
for these distances.

Formally, the values foforestdist(r(i1)..i, 7(j1)..), J € {j', 5"} are given by:

forestdist(r(i1)..c — 1, r(j1)-.J) + y(Th[i] — ¢),
ming forestdist(r(i1)..i, 7(j1)..J— 1) + (e = To[j]),
forestdist(r(i1)..i — 1, r(j1).3—1) + ~(Th[i] = T2[j])
iff r(4) = r(i1) and r(j) = r(j1)
forestdist(r(i1)..i — 1, r(j1)-.J) + y(T1[i] — e),
min< forestdist(r(iq)..i, r(j1)..J — 1) + (e = Ty[j)]),
forestdist(r(iy)..r(i) — 1, r(51)..7(j) — 1) + treedist(s,])

otherwise

Here,r(j1) # r(j), since we have assumed there is a shared structure between
Ty[r(3)] andT[r(j1)]. So, we can focus on the alternative computation, where:

1. The values forforestdist(r(i1)..i — 1, r(j1)..J),] € {4, 3"} have
been computed by the matching algorithm in a previous step. irSthis
case, parse sharing has no consequences on the naturaltatampfor the
distances.

e Fnll

TG4
F---’fnll

il
T ey
T [rk)]

TG)-1]

T, Ik) T, [tk) TG

Figure 8: Sharing into a samekeyroot

2. Two cases are possible in relation to the nature of n@dgs j € {j', j"}:

¢ If both nodes are leaves, the(j) = j. As a consequence, we have that

TQ[jl —1] = TQ[T(jI) —1] = Tg[?"(j”) —-1] = TQ[j” —1]

and the valueforestdist(r(i1)..7, r(41)..j — 1), j € {4', 5"} are also
the same.

e Otherwise, following the inverse postorder, we would a&rat the
rightmost leaves ofl»[j'] and T[], where we could apply the
reasoning considered in the previous case.

3. Values for the distancdsrestdist(r(iq)..r(i) — 1, r(j1)..r(G) — 1),] €
{j', 7"} are identical, given that nodds([r(j) — 1], j € {4, j"} are shared
by the parser.

5.2 Sharing between different r_keyroots

We have thay] € anc(j') andji € anc(j"), with j1 # ji, are two tkeyroots.

We also have aoR nodeT; k| being a common ancestor of these two nodes. We

suppose that thekeyroots are in different branches, that is, there existiseyroot,
Ty[41] (resp.Tx[41]), in the branch labele@,[%'] (resp.T»[k")).

Our aim now is to compute the value for distanéesestdist(r(i1)..i, 7(j1)..j),
where pairgji,]) are in{(51, j'), (47,7")}. Formally, we have that these values
are given by:

{ forestdist(r(iq)..i — 1, r(1)..) + y(Thli] — &), }
ming forestdist(r(i1)..7, r(j1)..j— 1) + (e = To[]),
forestdist(r(i1)..i — 1, r(j1)..J—1) + ~(Th[i] = T»[j])
iff r(4) = r(iy) and r(j) = r(j1)

forestdist(r(iy)..i — 1, r(j1)..J) + y(Th[i] — #),
ming forestdist(r(i1)..7, r(j1)..j— 1) + (e = To[),

{ forestdist(r(iy)..r(i) — 1, r(j1)..r(G) — 1) + treedist(s,j) }

otherwise

The situation, shown in Fig. 9, makes possitlg = r(i1) andr(j) = r(j1). Inthe
first case, we can assume that a tail of sons is shared by @ddes € {j’, j"}.
We can also assume that this tail is proper given that, oikefwour parser
guarantees that the nod&sj], j € {j’, j”} are also shared.

T K
------------- =il
'

Figure 9: Sharing between differentkeyroots (first case)

Taking into account our parsing strategy, which identifigstactic structures and
computations, we conclude that the distanf@estdist(r(i1)..i, r(j1)..j), with
G1,3) € {(1, 7)), (47,7)} do not depend on previous computations over
the shared tail, as shown in the left-hand side of Fig. 9. Be,gharing has no
consequences on the calculus, although it will have effectdhe computation of
distances for nodes in the rightmost branch of the tree inmeg to the left of
the shared tail of sons, which are denoted by a double polimedh Fig. 9.

We consider now the second case, that is, the computatidmedbtest distance
whenr(j;) # r(j), as shown in Fig. 10. Here, in relation to each one of the three
alternative values needed to compute the minimum, we hate th

1. Forforestdist(r(i1)..i — 1, r(j1)..j), (1,) € {(j1. 4'), (475")} the
matching algorithm has computed the needed values in aguegtep and
parse sharing does not affect the computation for distances

2. We distinguish two cases in relation to the nature of ndhig§, j €
{(j', 7). We shall apply the same reasoning considered when we had an
only r_keyroot:

e If both nodes are leaves, the(j) = j. As a consequence, we have that

Dl = 1] = D[r(j") — 1] = Ta[r(j") — 1] = Ta[j" — 1]

and therefore the values for distandesestdist(r(i1)..7, (ji)..j — 1)
with (j1.3), € {(i1, 4), (415")}, are also the same.

e Otherwise, following the inverse postorder, we arrive te tightmost
leaves of Ty[j'] and T»[j"], where we can apply the reasoning
considered in the previous case.

3. Values for the distancesrestdist(r(i;)..r(i) — 1, 7(j1)..rG) — 1), j €
{j', 7"} are identical, given that the trees rooted by ndfigs(j) — 1], j €
{j', 7"} are shared by the parser.

K]
r...r ’—nll
: - ~ i
T 01" "
r...rnl
rr\iI
. U7, 1G4
.."' I
rnl| [~ f.n,l
3 ETQUG”H] DRl
: _ BN
F"T”" r...’fnll
: r nil : .rnil
T0 T, 071

T, [T, [G)

Figure 10: Sharing between differenkeyroots (second case)

6 EXPERIMENTAL RESULTS

To facilitate understanding we consider a simple exampleilltstrate our
discussion: the languagg, of arithmetic expressions. We compare our proposal
with Tai [Tai 1978], and Zhang and Shasha’s algorithm [Zh&nh8hasha 1989].
We consider three different grammars generatingwo deterministicGy, andGg,
representing respectively the left and right associatmesions for the arithmetic

operators; and one non-determinisfig;. To simplify the explanation, we focus
on matching phenomena assuming that parsers are built Ls{Yilares & Dion
1994]. Lexical information is common in all cases, and téstge been applied on
target inputs of the form, + a9 + ... + a; + a;4.1, With 7 even, representing the
number of addition operators in the expression. Given th#te non-deterministic
case,Gy contains a rule "Exp ::= Exp + Exp”, these programs have a rarmb
ambiguous parses which grows exponentially witfihis number is:

i 1
O():Ol:l and 07:<222>?’|f7,>1
2

allowing us to study the compilation schema when highly nedunt computations
appears. As pattern, we have used deterministic parseftopeputs of the form
a1 +by +az3 +b3 +...b,_1 + a1 + bi+1 + ait1, Wherebj 7§ aj—1, for all
jef{1,3,...i—1,i+1}.

In the deterministic case, patterns are built from the dseciative (resp. right-
associative) interpretation f@i;, (resp.Gr), which allows us to evaluate the impact
of traversal orientation in the performance of the patteaiaming algorithm. So,
the rightmost diagram in Fig. 11 proves the adaptation of pmaposal (resp.
Zhang and Shasha’s algorithm) to left-recursive (resgtsigcursive) derivations.
This corroborates our previous theoretical conclusiortsjastifies the interest of
the work presented. These practical tests also show th@endence of Tai's
algorithm of the grammar rules topology. This is basicalle do the fact that
mapping between two nodes is not computed from the mappihgelbea their
descendents, but from their ancestors, where structuaainghis not allowed by
the parser. As a consequence, Tai's approach does not bieoefithe dynamic
programming architecture.

In the non-deterministic case, patterns are built from thé#&-dssociative
interpretation of the query, which is not relevant giventthales in Gy are
symmetric. Here, we evaluate the gain in efficiency due taisgaf computations
in a dynamic frame, as shown in the leftmost diagram of Fig. 11

7 CONCLUSIONS

Approximate tree matching can be adapted to deal with sHaredt. To improve
the performances, the impact of the parsing strategy in éselting shared
structure should be studied. This allows to formally jystiie type of traversal
used to visit nodes during the matching, taking the maximdwaatage from parse
sharing.

2e+09

8000

Using Sharing —— . " Tai's algorithm (with G_L and G_R) —e—

1.8¢+09 | Without Sharing —s— le+08 Z&S’s with G_R and our proposal with G_L —*—
Number of Ambiguities - 7000 - 7&$’s with G_L and our proposal with G_R 1

1.6e+09 | 1e+07
6000 -

1.4e+09 4 le+06

5000
1.2e+09 4 100000
le+09 - 4000
10000

8e+08 3000 |

Number of Ambiguities.

4 1000
6e+08 -

Number of nodes processed.

i 2000 -
4e+08 100

Number of Elementary Operations.

110 1000

2e+08

0

N ‘ ' o
0 2 4 6 8 10 12 14 16 18 0 5 10 15 20
Value of i for Ci. Value of i for Ci.

Figure 11: Results on approximate tree matching

REFERENCES

Kuo-Chung Tai, 197&yntactic error correction in programming languagesSEE
Transactions on Software Engineering, SE-4(5), page4254-

M. Vilares and B. A. Dion, 199&fficient incremental parsing for context-free
languages Proc. of the5"” IEEE International Conference on Computer
Languages, pages 241-252, Toluose, France.

K. Zhang and D. Shasha, 198%imple fast algorithms for the editing distance
between trees and related problens SIAM Journal of Computing, volume
18, pages 1245-1262.

Manuel Vilares Ferro is a professor at the Computer Science Department, Untyaerfsi
Corufia, Campus de Elvifia s/n, 15071 A Corufia, SPAlMres@dc.fi.udc.es

David Cabrero Souto is a doctoral student at the Computer Science Departmeivetsity
of A Corufa.cabrero@dc.fi.udc.es

Francisco J. Ribadas Pena is a doctoral student at the Computer Science Department,
University of A Coruiaribadas@mail2.udc.es

This work has been partially supported by projects XUGA ZB®7 of the Autonomous
Government of Galicia, project PGIDT99XI10502B of Span@bvernment and project
1FD97-0047-C04-02 by the European Community.

