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In this paper, we present a proposal intended to demonstratethe applicability
of tabulation techniques to pattern recognition problems,when we deal with
structures sharing some common parts. This work is motivated by the study of
information retrieval for textual databases, using pattern matching as a basis for
querying data.

To attain this goal, we study the existing relationship between parsing schema and
tree-to-tree correction in a dynamic programming frame. Asa result, we describe
an algorithm that efficiently profits from sharing in syntactic structures.

1 INTRODUCTION

One critical aspect of an information system is indexing, that is, the representation
of concepts to get a well formed data structure for search. Until recently, this task
was accomplished by creating a bibliographic citation thatreferences the original
text. This approach allows a reduction in time and space bounds, although it
does not facilitate the user from finding relevant information. In effect, it is the
combination of the words and their semantic implications that contain the value of
these concepts, which leads us to more sophisticated index representations, such
as context-free grammars. This information is inherent in the document and query.
So, matching becomes a possible mechanism to extract a common pattern from
multiple data and we could use it for indexing and querying ininformation retrieval
systems.

However, the language intended to represent the document can often only be
approximately defined, and ambiguity arises. So, it is convenient to merge parse
trees as much as possible into a single structure that allowsthem to share common
parts. Queries could also vary from the indices and an approximate matching
strategy becomes necessary. At this point, our aim is to exploit structural sharing
during the matching process in order to improve performances.



2 A DYNAMIC FRAME FOR PARSING

We introduce ICE [Vilares & Dion 1994], a parsing frame in dynamic
programming. Our aim is to parse sentences in the languageL(G) generated by
a context-free grammarG = (N;�; P; S), whereN is the set of non-terminals,�
the set of terminal symbols,P the rules andS the start symbol. The empty string
will be represented by".
2.1 The operational model

We assume that, using a standard technique, we produce apush-down automaton
(PDA) from the grammarG. In practice, we chose aLALR (1) device, possibly non-
deterministic, which will allow us to improve sharing of computations. Formally,
a PDA can be represented as a 7-tupleA = (Q;�;�; Æ; q0 ; Z0 ;Qf ) where:Q is
the set of states,� the set of input symbols,� the set of stack symbols,q0 the
initial state,Z0 the initial stack symbol,Qf the set of final states, andÆ a finite
set of transitions of the formp X a 7! q Y with p; q 2 Q, a 2 � [ f"g andX;Y 2 � [ f"g.
Let thePDA be in a configuration(p;X�; ax), wherep is the current state,X� is
the stack contents withX on the top,ax is the remaining input where the symbola is the next to be shifted,x 2 ��. The application ofp X a 7! q Y results
in a configuration(q; Y �; x) where the terminal symbola has been scanned,X
has been popped, andY has been pushed. If the terminal symbola is " in the
transition, no input symbol is scanned. IfX is " then no stack symbol is popped
from the stack. In a similar manner, ifY is " then no stack symbol is pushed on
the stack. In the case of ambiguous recognition, several such transitions can be
applied.
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Figure 1: Node generation and dynamic transitions inICE

We proceed by buildingitems, compact representations of the recognizer stacks.
New items are produced by applying transitions to existing ones, until no new
application is possible. We associate a set of itemsSwi , called itemset, for the
symbolwi at the positioni in the input string of lengthn, w1::n.



An item has the form[p;X; Swj ; Swi ℄, wherep is aPDA state,X is a stack symbol,Swj is theback pointerto the itemset associated to the input symbolwj at which
we began to look for that configuration of the automaton, andSwi is the current
itemset. A merit ordering technique guarantees fairness and completeness, while
operations may add more items to the current itemset and may also put items in
the itemset corresponding to the following token to be analyzed from the input
string. To ignore redundant items we use a simple subsumption relation based on
the equality.

2.2 The parser

We represent a parse as the chain of the context-free rules used in a leftmost
reduction of the input sentence [Vilares & Dion 1994], rather than as a tree. When
the sentence has distinct parses, the set of all possible parse chains is represented
in finite shared form by a context-free grammar that generates that possibly infinite
set. Context-free grammars can be represented byAND-OR graphs that in our
case are precisely the shared-forest graph. In this graph,AND-nodes correspond
to the usual parse-tree nodes, whileOR-nodes correspond to ambiguities. Sharing
of structures is represented by nodes accessed by more than one other node and
it may correspond to sharing of a complete subtree, but also sharing of a part of
the descendants of a given node, in fact, a consequence of thebinary nature of the
transition protocol previously described. This feature allows to prove [Vilares &
Dion 1994] that time complexity for the parser is, in the worst case,O(n3) when
the length of the input string isn. Space complexity is, also in the worst case,O(n2).
Items are used as non-terminals of an output grammarGo = (No;�o; Po; So),
whereNo is the set of all items,�o the set of input symbols of the original grammarG, and the rules inPo are constructed together with their left-hand-side itemI by
the parsing algorithm. We generate a rule for the output grammar each time a
reduce or a shift action from the grammar defining the language is applied on the
stack, as shown in Fig. 1. The start symbolSo is the last item produced by a
successful computation.

We build apush-down transducer(PDT), TG = (Q;�;�;�; Æ; q0; Z0;Qf ), from
our PDA model augmenting it with a component� representing the set of output
symbols, and considering transitions inÆ of the form p X a 7! q Y u withp; q 2 Q; a 2 � [ f"g; X;Y 2 � [ f"g, andu 2 ��.
Given� = Æ(p;X; a) 3 (q; Y; u), we translate it to items of the following form:



1: ~Æ([p;X; Swj ; Swi ℄; a) 3 ([q; "; Swi ; Swi ℄; ") if Y = X2: ~Æ([p;X; Swj ; Swi ℄; a) 3 ([p; Y; Swi ; Swi+1℄; I0 ! a) if Y = a3: ~Æ([p;X; Swj ; Swi ℄; a) 3 ([p; Y; Swi ; Swi ℄; I1 ! I2) if Y 2 N4: ~Æ([p; "; Swj ; Swi ℄; a) 3 ~Æd([q; "; Swl ; Swi ℄; a) 3 ([q; "; Swl ; Swj ℄; I3 ! I4I5) if Y = "8q 2 Q such that:9 Æ(q;X; ") 3 (p;X; ")
with: ~Æ : It �� [ f"g �! fIt [ ~Ædg ��� ~Æd : It �� [ f"g �! It
and I0 = [p; Y; Swi ; Swi+1℄ I1 = [p; Y; Swi ; Swi ℄ I2 = [p;X; Swj ; Swi ℄I3 = [q; "; Swl ; Swi ℄ I4 = [q;X; Swl ; Swj ℄ I5 = [p; "; Swj ; Swi ℄
whereIt is the set of all parse items and~Æd is called the set ofdynamic transitions.
Succinctly, we can describe the preceding cases as follows:

1. A goto action from the statep to stateq under transitionX in the LALR (1)
automaton.

2. A push of terminala from statep. The new item belongs to the next itemsetSwi+1.
3. A push of non-terminalY from statep.

4. A pop action from statep, whereq is an ancestor ofp under transitionX.
In this case, we do not generate a new item, but adynamic transition~�d to
treat the absence of information about the rest of the stack.This transition is
applicable to the configuration resulting of the first one, but also on those to
be generated and sharing the same syntactic structure, as shown in Fig. 1.

3 A DYNAMIC FRAME FOR APPROXIMATE TREE

MATCHING

We introduce the Zhang and Shasha’s approach [Zhang & Shasha1989] to
determine the distance between two trees as measured by the number of edit
operations needed to transform one tree into the other.

3.1 The operational model

Given trees,T1 and T2, we define anedit operationas a paira ! b; a 2
labels(T1) [ f"g; b 2 labels(T2) [ f"g; (a; b) 6= ("; "). Deleting a nodea,a! ", means making the children ofa become the children of the parent ofa and



then removinga. Inserting,"! b, is the complement of delete. Changing a node,a ! b, means changing the nodea label intob. Generic examples of such edit
operations are shown in Fig. 2.
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Figure 2: Edit operations

Each edit operation has an associated cost,
(a ! b), defined by a metric
, that
we can extend to a sequenceS of edit operationss1; s2; : : : ; sn in the form
(S) = PjSji=1(
(si)). Formally, the distance betweenT1 andT2 is defined by the
metric: Æ(T1; T2) = minf
(S); S editing sequence takingT1 to T2g
In order to simplify the computation ofÆ, Tai introduces in [Tai 1978] a particular
kind of edit sequences calledmappings. Given a treeT , we shall consider a
postorder traversal to name each nodei uniquely byT [i℄, as shown in the left-
hand side of Fig. 3. Then, a mapping fromT1 to T2 is a triple(M;T1; T2), whereM is a set of integer pairs(i; j) satisfying, for each1 � i1; i2 �j T1 j and1 � j1; j2 �j T2 j:i1 = i2 iff j1 = j2 (one-to-one)T1[i1℄ is to the left ofT1[i2℄ iff T2[j1℄ is to the left ofT2[j2℄ (sibling order)T1[i1℄ is an ancestor ofT1[i2℄ iff T2[j1℄ is an ancestor ofT2[j2℄ (ancestor order)

We show, in the right-hand side of Fig. 3, an example of mapping between
two trees. The rightmost diagram includes a sequence of editoperations not
constituting a mapping. The cost,
(M), of a mapping(M;T1; T2) is computed
from relabeling, deleting and inserting operations, as follows:
(M) = X(i;j)2M 
(T1[i℄! T2[j℄) +Xi2D 
(T1[i℄! ") +Xj2I 
("! T2[j℄)
where D and I are, respectively, the nodes inT1 and T2 not touched by
any line in M . Tai proves, given treesT1 and T2, that Æ(T1; T2) =minf
(M); M mapping from T1 to T2g, which allows us to reduce the
computation effort, focusing only on edit sequences being amapping.
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Figure 3: Postorder traversal and mappings

3.2 The algorithm

A major characteristic of the Zhang and Shasha’s algorithm is its bottom-up
oriented approach. The minimum cost mapping between two nodes in different
trees depends only on mapping the nodes and their children. More exactly, given
the l keyroots(T ), the set of all nodes inT which have a left sibling plus the root,
root(T ), of T ; the algorithm proceeds through the nodes determining mappings
from all leaf l keyroots first, then all lkeyroots at the next higher level, and so on
to the root.

We introducel(i) (resp. an
(i)) as the leftmost leaf descendant of the subtree
rooted atTi (resp. the ancestors ofTi) in a treeT , andT [i::j℄ as the ordered
subforest ofT induced by the nodes numberedi to j inclusive, as it is shown in the
left-hand side of Fig. 3. In particular, we haveT [l(i)::i℄ is the tree rooted atT [i℄.
We define theforest edition distanceas a generalization ofÆ, in the form

forestdist(T1[i1::i2℄; T2[j1::j2℄) = Æ(T1[i1::i2℄; T2[j1::j2℄)
that we shall denoteforest dist(i1::i2; j1::j2) when the context is clear. Intuitively,
this new concept computes the distance between two nodes,T1[i2℄ andT2[j2℄, in
the context of their left siblings in the corresponding trees, while the corresponding
tree distance,Æ(T1[i2℄; T2[j2℄), is computed only from their descendants.

Formally, we computetree dist(T1; T2) applying the formulas that follows, for
nodesi1 2 an
(i) and j1 2 an
(j), such as illustrated in Fig. 4, taking into
account the different cases we have that forestdist(l(i1)::i; l(j1)::j) is:



i1 1jl(i) = l(   )  and  l(j) = l(   )forestdist(l(i  ) .. i-1, l(j  ) .. j-1)
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Figure 4: The forest distance in Zhang and Shasha’s algorithm

min

8<: forestdist(l(i1)::i� 1; l(j1)::j) + 
(T1[i℄! ");
forestdist(l(i1)::i; l(j1)::j � 1) + 
("! T2[j℄);
forestdist(l(i1)::i� 1; l(j1)::j � 1) + 
(T1[i℄! T2[j℄) 9=;

iff l(i) = l(i1) and l(j) = l(j1)
min

8<: forestdist(l(i1)::i� 1; l(j1)::j) + 
(T1[i℄! ");
forestdist(l(i1)::i; l(j1)::j � 1) + 
("! T2[j℄);
forestdist(l(i1)::l(i)� 1; l(j1)::l(j)� 1) + treedist(i; j) 9=;

otherwise

Now, to compute the distance betweenT1 andT2, it will be sufficient to take into
account that

treedist(T1; T2) = forestdist(l(root(T1))::root(T1); l(root(T2))::root(T2))
It is important to remark that conditions of the typel(i1) 6= l(i) (resp.l(j1) 6= l(j))
rely on nodes inl keyroots(T1) (resp. nodes inl keyroots(T2)), as it is also the
case ofroot(T1) (resp. root(T2)). The time complexity of this algorithm isO(n1n2min(d1; l1)min(d2; l2)), and the space complexity isO(n1n2), both in
the worst case, whereni is the number of nodes in the treeTi, di is the depth ofTi
andli is the number of leaves inTi, i = 1; 2.



4 RELATING PARSING AND TREE MATCHING

The major question of previous related works [Zhang & Shasha1989], is the
tree distance algorithm itself. However, in dealing with information retrieval
often parsing and tree-to-tree correction are topologically related. Typically, this
relation is the case when we deal with unrestricted natural language texts, including
ambiguous sentences, and the syntactic representation used for indexing can be
composed by trees with some common parts. In this context, the number of
matching operations would be uselessly multiplied and sharing of data structures
and computations would save space needed to represent the trees. To attain this
goal, we first need to isolate the factors at the origin of structural sharing.

4.1 Sharing of a tail of sons

To get the best performance, it is necessary to understand the mechanisms that
cause the phenomenon of tree duplication. In this case, our parsing framework is
interesting because it identifies syntactic and computation structures in the same
concept, the item.
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Figure 5: How shared forest are built using anAND-OR formalism

Given that actions on thePDA depend on the first and possibly second elements in
the stack, the output grammar is a2-formone and sharing of a tail of sons in a node
of the resulting forest is possible. More exactly, bottom-up parsing may share only
the rightmost constituents, while top-down parsing may only share the leftmost
ones. This relies to the type of search used to built the forest. Breadth first search
results on bottom-up constructions and depth first search results on top-down ones,
as it is shown in Fig. 5.

Taking into account that our parsing scheme is bottom-up, rightmost search of tree
constituents should be considered in order to take advantage from sharing achieved
during the parsing process.



4.2 Adapting the approximate tree matching strategy

One major observation we noted is that Zhang and Shasha consider a postorder
traversal, computing the forest distance by left-recursion on this search. Realizing
that our parser shares computations from right-to-left, wecontend that an efficient
integration of both algorithms requires to redefine the architecture of the original
matching strategy.

To accomplish this change, nodes in a treeT will be first numbered considering an
inverse postorder traversal, as shown in Fig. 6. We also introducer keyroots(T ) as
the set of all nodes in a treeT which have a right sibling plus the root,root(T ), ofT . And also we definer(i) as the rightmost leaf descendant of the subtree rooted
atTi in a treeT .
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Figure 6: The forest distance using an inverse postorder numbering

From here, the alternative construction for the forest edition distance is analogous
to the original algorithm, as shown in Fig. 7. For a better understanding we shall
present the computations used with the inverse postorder. Given treesT1 andT2,
and nodesi1 2 an
(i) andj1 2 an
(j), we have that forestdist(r(i1)::i; r(j1)::j)
is :

min

8<: forestdist(r(i1)::i� 1; r(j1)::j) + 
(T1[i℄! ");
forestdist(r(i1)::i; r(j1)::j � 1) + 
("! T2[j℄);
forestdist(r(i1)::i� 1; r(j1)::j � 1) + 
(T1[i℄! T2[j℄) 9=;

iff r(i) = r(i1) and r(j) = r(j1)
min

8<: forestdist(r(i1)::i� 1; r(j1)::j) + 
(T1[i℄! ");
forestdist(r(i1)::i; r(j1)::j � 1) + 
("! T2[j℄);
forestdist(r(i1)::r(i) � 1; r(j1)::r(j) � 1) + treedist(i; j) 9=;

otherwise

To computetree dist(T1; T2) it will be sufficient to take into account that

treedist(T1; T2) = forestdist(root(T1)::r(root(T1)); root(T2)::r(root(T2)))
Lastly, time and space bounds are the same as in the classic postorder version.
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Figure 7: The forest distance in our proposal

5 APPROXIMATE MATCHING IN SHARED FOREST

Once we have motivated and formalized the adaptation of a classic approximate
matching approach to efficiently deal with bottom-up parsers, we now offer a
simple explanation about how both environments, parsing, and approximate tree
matching, can be integrated in practice.

To start with, letT1 be a labeled ordered tree, andT2 an AND-OR graph, both of
them built using our parsing frame. We shall identifyT1 with a query andT2 with
a part of the syntactic representation for a textual database with a certain degree of
ambiguity. The presence ofOR nodes inT2 has two main implications in our work:
Firstly, there will exist situations where we must handle simultaneous values for
some forest distances and, secondly, the parser may share some structures among
the descendants of the different branches in anOR node. We shall now present the
manner we calculate the distance between a pattern tree and the set of trees that
are represented within theAND-OR graph, and how to take advantage of the shared
structures created by the parser.

Let T1[i℄ be the current node in the inverse postorder forT1 and i1 2 anc(i) a
r keyroot. Given anOR nodeT2[k℄ we can distinguish two situations, depending
on the situation of thisOR node and the situation of the rkeyroots ofT2.



5.1 Sharing into a same r keyroot

LetT2[j0℄ andT2[j00℄ be the nodes we are dealing with in parallel for two branches,
labeledT2[k0℄ andT2[k00℄, of the OR nodeT2[k℄. We have thatj1 2 anc(j0) \
anc(j00), that is, the tree rooted at the rkeyrootT2[j1℄ includes theOR alternativesT2[k0℄ andT2[k00℄.
Such situation is shown in Fig. 8 using a classic representation and theAND-
OR graphs. Here, the part shaded in light color refers to nodes whose distance
have been computed in the inverse postorder before theOR node T2[k℄. The
part shaded in dark color represents a shared structure. Thenotation “� � �”
in figures representingAND-OR graphs, expresses that we descend along the
rightmost branch of the corresponding tree.

We shall assume that nodesT2[r(j0) � 1℄ andT2[r(j00) � 1℄ are the same, that
is, their corresponding subtrees are shared. So,T2[r(j0)℄ (resp. T2[r(j00)℄) is the
following node inT2[k0℄ (resp.T2[k00℄) to deal with once the distance for the shared
structure has been computed.

At this point, our aim is to compute the value forforest dist(r(i1)::i; r(j1)::̂�); �̂ 2fj0; j00g, proving that we can translate parse sharing on sharing of computations
for these distances.

Formally, the values forforest dist(r(i1)::i; r(j1)::̂�); �̂ 2 fj0; j00g are given by:

min

8><>: forest dist(r(i1)::i� 1; r(j1)::̂�) + 
(T1[i℄! ");
forest dist(r(i1)::i; r(j1)::̂�� 1) + 
("! T2 [̂�℄);
forest dist(r(i1)::i� 1; r(j1)::̂�� 1) + 
(T1[i℄! T2 [̂�℄) 9>=>;

iff r(i) = r(i1) and r(̂�) = r(j1)
min

8><>: forest dist(r(i1)::i� 1; r(j1)::̂�) + 
(T1[i℄! ");
forest dist(r(i1)::i; r(j1)::̂�� 1) + 
("! T2 [̂�℄);
forest dist(r(i1)::r(i) � 1; r(j1)::r(̂�)� 1) + tree dist(i; �̂) 9>=>;

otherwise

Here, r(j1) 6= r(̂�), since we have assumed there is a shared structure betweenT2[r(̂�)℄ andT2[r(j1)℄. So, we can focus on the alternative computation, where:

1. The values forforest dist(r(i1)::i � 1; r(j1)::̂�); �̂ 2 fj0; j00g have
been computed by the matching algorithm in a previous step. So, in this
case, parse sharing has no consequences on the natural computation for the
distances.
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Figure 8: Sharing into a same rkeyroot

2. Two cases are possible in relation to the nature of nodesT2 [̂�℄; �̂ 2 fj0; j00g:� If both nodes are leaves, thenr(̂�) = �̂. As a consequence, we have thatT2[j0 � 1℄ = T2[r(j0)� 1℄ = T2[r(j00)� 1℄ = T2[j00 � 1℄
and the valuesforest dist(r(i1)::i; r(j1)::̂� � 1); �̂ 2 fj0; j00g are also
the same.� Otherwise, following the inverse postorder, we would arrive at the
rightmost leaves ofT2[j0℄ and T2[j00℄, where we could apply the
reasoning considered in the previous case.

3. Values for the distancesforest dist(r(i1)::r(i) � 1; r(j1)::r(̂�) � 1); �̂ 2fj0; j00g are identical, given that nodesT2[r(̂�)� 1℄; �̂ 2 fj0; j00g are shared
by the parser.

5.2 Sharing between different r keyroots

We have thatj01 2 an
(j0) andj001 2 an
(j00), with j01 6= j001 , are two rkeyroots.
We also have anOR nodeT2[k℄ being a common ancestor of these two nodes. We
suppose that the rkeyroots are in different branches, that is, there exists a rkeyroot,T2[j01℄ (resp.T2[j001 ℄), in the branch labeledT2[k0℄ (resp.T2[k00℄).
Our aim now is to compute the value for distancesforest dist(r(i1)::i; r(̂�1)::̂�),
where pairs(̂�1; �̂) are inf(j01; j0); (j001 ; j00 )g. Formally, we have that these values
are given by:



min

8<: forestdist(r(i1)::i� 1; r(̂�1)::̂�) + 
(T1[i℄! ");
forestdist(r(i1)::i; r(̂�1)::̂�� 1) + 
("! T2[̂�℄);
forestdist(r(i1)::i� 1; r(̂�1)::̂�� 1) + 
(T1[i℄! T2 [̂�℄) 9=;

iff r(i) = r(i1) and r(̂�) = r(̂�1)
min

8<: forestdist(r(i1)::i� 1; r(̂�1)::̂�) + 
(T1[i℄! ");
forestdist(r(i1)::i; r(̂�1)::̂�� 1) + 
("! T2 [̂�℄);
forestdist(r(i1)::r(i) � 1; r(̂�1)::r(̂�)� 1) + treedist(i; �̂) 9=;

otherwise

The situation, shown in Fig. 9, makes possibler(i) = r(i1) andr(̂�) = r(̂�1). In the
first case, we can assume that a tail of sons is shared by nodesT [̂�℄; �̂ 2 fj0; j00g.
We can also assume that this tail is proper given that, otherwise, our parser
guarantees that the nodesT2 [̂�℄; �̂ 2 fj0; j00g are also shared.
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Figure 9: Sharing between different rkeyroots (first case)

Taking into account our parsing strategy, which identifies syntactic structures and
computations, we conclude that the distancesforest dist(r(i1)::i; r(̂�1)::̂�), with(̂�1; �̂) 2 f(j01; j0); (j001 ; j00 )g do not depend on previous computations over
the shared tail, as shown in the left-hand side of Fig. 9. So, this sharing has no
consequences on the calculus, although it will have effectson the computation of
distances for nodes in the rightmost branch of the tree immediately to the left of
the shared tail of sons, which are denoted by a double pointedline in Fig. 9.

We consider now the second case, that is, the computation of the forest distance
whenr(̂�1) 6= r(̂�), as shown in Fig. 10. Here, in relation to each one of the three
alternative values needed to compute the minimum, we have that:

1. For forest dist(r(i1)::i � 1; r(̂�1)::̂�); (̂�1; �̂) 2 f(j01; j0); (j001 ; j00 )g the
matching algorithm has computed the needed values in a previous step and
parse sharing does not affect the computation for distances.



2. We distinguish two cases in relation to the nature of nodesT2 [̂�℄; �̂ 2f(j0; j00). We shall apply the same reasoning considered when we had an
only r keyroot:� If both nodes are leaves, thenr(̂�) = �̂. As a consequence, we have thatT2[j0 � 1℄ = T2[r(j0)� 1℄ = T2[r(j00)� 1℄ = T2[j00 � 1℄

and therefore the values for distancesforest dist(r(i1)::i; r(̂�1)::̂�� 1)
with (̂�1; �̂);2 f(j01; j0); (j001 ; j00 )g, are also the same.� Otherwise, following the inverse postorder, we arrive to the rightmost
leaves of T2[j0℄ and T2[j00℄, where we can apply the reasoning
considered in the previous case.

3. Values for the distancesforest dist(r(i1)::r(i) � 1; r(ĵ1)::r(̂�) � 1); �̂ 2fj0; j00g are identical, given that the trees rooted by nodesT2[r(̂�)� 1℄; �̂ 2fj0; j00g are shared by the parser.
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Figure 10: Sharing between different rkeyroots (second case)

6 EXPERIMENTAL RESULTS

To facilitate understanding we consider a simple example toillustrate our
discussion: the language,L, of arithmetic expressions. We compare our proposal
with Tai [Tai 1978], and Zhang and Shasha’s algorithm [Zhang& Shasha 1989].
We consider three different grammars generatingL: two deterministic,GL andGR,
representing respectively the left and right associative versions for the arithmetic



operators; and one non-deterministicGN . To simplify the explanation, we focus
on matching phenomena assuming that parsers are built usingICE [Vilares & Dion
1994]. Lexical information is common in all cases, and testshave been applied on
target inputs of the forma1 + a2 + : : : + ai + ai+1, with i even, representing the
number of addition operators in the expression. Given that,in the non-deterministic
case,GN contains a rule ”Exp ::= Exp + Exp”, these programs have a number of
ambiguous parses which grows exponentially withi. This number is:C0 = C1 = 1 and Ci = � 2ii � 1i+ 1 ; if i > 1
allowing us to study the compilation schema when highly redundant computations
appears. As pattern, we have used deterministic parse treesfrom inputs of the forma1 + b1 + a3 + b3 + : : : bi�1 + ai�1 + bi+1 + ai+1, wherebj 6= aj�1, for allj 2 f1; 3; : : : i� 1; i+ 1g.
In the deterministic case, patterns are built from the left-associative (resp. right-
associative) interpretation forGL (resp.GR), which allows us to evaluate the impact
of traversal orientation in the performance of the pattern matching algorithm. So,
the rightmost diagram in Fig. 11 proves the adaptation of ourproposal (resp.
Zhang and Shasha’s algorithm) to left-recursive (resp. right-recursive) derivations.
This corroborates our previous theoretical conclusions and justifies the interest of
the work presented. These practical tests also show the independence of Tai’s
algorithm of the grammar rules topology. This is basically due to the fact that
mapping between two nodes is not computed from the mapping between their
descendents, but from their ancestors, where structural sharing is not allowed by
the parser. As a consequence, Tai’s approach does not benefitfrom the dynamic
programming architecture.

In the non-deterministic case, patterns are built from the left-associative
interpretation of the query, which is not relevant given that rules in GN are
symmetric. Here, we evaluate the gain in efficiency due to sharing of computations
in a dynamic frame, as shown in the leftmost diagram of Fig. 11.

7 CONCLUSIONS

Approximate tree matching can be adapted to deal with sharedforest. To improve
the performances, the impact of the parsing strategy in the resulting shared
structure should be studied. This allows to formally justify the type of traversal
used to visit nodes during the matching, taking the maximum advantage from parse
sharing.
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