On Non-Termination in DCGs

M. Vilares Ferro
D. Cabrero Souto
M. A. Alonso Pardo

The objective of this paper is to study a practical approacidegal with non-
termination in definite clause grammars. We focus on two lprob, loop and
cyclic structure detection and representation, maimagimi tight balance between
practical efficiency and operational completeness.

In order to guarantee the validity of our conclusions, we finep our study to
a common situated framework, where the effectiveness df approach will be
examined and, later, compared by running experiments.

1 INTRODUCTION

Non-termination is a crucial problem when encoding unif@abased grammar
formalisms, although practical systems often diverge framir theoretical
definitions. By termination we mean here finiteness of allsfide logical
derivations starting in the initial goal. Although from &tretical point of view, we
can claim it for decidable problems, often logical probleares confronted with the
problem that an apparently correct program may fail to teata for certain forms
of the input. This is, typically, the case oRBLOG programs with left-recursion
on local variables.

This difference between theoretical and practical opematimodels is justified by
efficiency gains, assuming that this kind of situations carubually avoided in
practical applications by alert programmers. However, dbscriptive potential
offered by unrestricted declarative programming is appted in language
development tasks, where a large completion domain allbesriodeling effort
to be saved.

Previous works on this subject often focus on strategieprioring termination in
left-terminating programs. This is the case of [Apt & Pedre990] or [Uliman

& Van Elder 1988]. However, these studies are limited to déti left-recursion

in top-down resolution and do not provide a practical apginda represent infinite
derivations. A different point of view is given by Filguesrén [Filguerias 1984],
providing effective representation for cyclic structures

We focus on two problems that arise when working with defidiéeise grammars
(DCGs), both of which can cause non-termination. The firgsbjgm is of general
interest in formal grammar theory and it concerns loop digtecwhen the parsing
process is repeatedly returned to the same processing $tagesecond problem
stems from cyclic structures and itis a consequence of npleimenting the occur-
check, which would forbid unification of a variable with artem which it occurs.

In both cases, we rely on strategies to represent cyclivaterns and structures.

Our proposal takes place in the framework of resolutiontediias based on
dynamic programming, not-limited to top-down approachvesile extending the
concept of unification to composed terms. Although the keyaidf dynamic
programming is to keep traces of computations to achievepatation sharing,
it also offers flexibility to investigate loop detection. @eal with cyclic structures,
our approach refines the occur-check to minimize the timatsgeecking for re-
occurring variables.

2 A SITUATED FRAMEWORK

As first goal, we structure our work within a well-defined franT his will allows us
to compare different approaches on the basis of an commaeniptase formalism,
focusing on strategy-dependent features.

2.1 The parsing model

We consider a uniform parsing frame, the logical push-doutoraaton (LPDA),
such as it is introduced in [Vilares & Alonso 1998].

An LPDA is defined as a 7-tuplel = (X,F,%,A,$,8;,0), whereX is a
denumerable and ordered set of variahlEss a finite set of functional symbol%}

is a finite set of extensional predicate symbdalgs a finite set of predicate symbols
used to represent the literals stored in the stask theinitial predicatg $ is the
final predicate and© is a finite set otransitions Thestackof the automaton is
a finite sequence afems|A, it, bp, st].c, where the top is on the left} is in the
algebra of termd'A [F U X], o a substitution;t is the current position in the input
string, bp is the position in this input string at which we began to look that
configuration of the LPDA, ansl is a state for a driver controlling the evaluation.
Transitions are of three kinds:

e Horizontal: B —— C{A}. Applicable to stack#.p ¢, iff there exists the
most general unifie(mgu),c = mgu(E, B) such thatFo = Ao, for F a
fact in the extensional database. We obtain the new stacko &.

e Pop: BD — C{A}. Applicable to stacks of the forrv.pE'.p' ¢, iff there
iso = mgu(E, E'p), (B, D)), such thatFo = Ao, for F a fact in the
extensional database. The result will be the new staek’po £.

e Push: B ~— CB{A}. We can apply it to stack#&.p &, iff there is
o = mgu E, B), such thatFo = Ao, for F a fact F' in the extensional
database. We obtain the staCk.o B.p €.

whereB, C andD are items and! is in Tx,[F U X}, a control condition to operate
the transition.

Dynamic programming is introduced by collapsing stackeepntations on a fixed
number ofitemsand adapting transitions in order to deal with these itembeiV
the correctness and completeness of computations areedssug talk about the
concept ofdynamic frame Here, the use aft allows us to index the parse, which
relies on the concept @emsetassociating a set of items to each token in the input
string. We usép to chain pop transitions.

Two dynamic frames are of practical intere§g and S, where the superscript
denotes the number of top stack elements used to genenaie. if€he standard
dynamic frameS?', where a stack is given by all its components, uses backiigck
to simulate non-determinism.

2.2 Cyclic structures

Conventional interpreters do not implement the occurkhacthe unification
algorithm. Doing so, it is possible to unify a variable withteam in which it
occurs, producing an infinite circular term.

To prevent this, we chose to work in the generalization ofstiiion to function
and predicate symbols, as initially proposed in [Filgugii®84]. This means
that the unification algorithm will treat symbols in the saway as for variables:
referencing or linking them whenever they unify, and deesieing before testing
for compatibility.

To illustrate our discussion we consider, as a classic elgriggms resulting from
solvinguni fy(X, f(X)) anduni fy(Y,f(f(Y))), as shown in step 1 of
Fig. 1. When using a conventional unification algorithm,heiit occur-check,
it will loop trying to unify X with Y.

Following now [Filgueiras 1984], the process is also showrFig. 1, where
we shall use— to denote a unification link from a represented symbol to its
representative. Here, the actions to be performed staretsfetencingX andY'.
The unification process leads to the unificationfdfwith 2, since both symbols

x—z
RN
step 1
step 3
x—z
f\‘
NS

3
PPN
step 2

Figure 1: Unification of X with .

have the same name and arity. So, a link is set ffdmo f2, as it is shown in
step 2 of Fig. 1. We now proceed with the unification of the argotsX and f3.

After dereferencingX to f1 and then tof2, it results in the unification of 2 and
/3. As consequence, a new link is added, as it is shown in stef-gol. Finally,
we have to unifyf3 andY’, which is dereferenced t62 and then tof 3, and it is
equal tof 3. The algorithm stops here, unifying§ andY’.

2.3 Loop detection

Loop detection resorts to noticing when the process is tefdbareturned to the
same processing state. In context-free parsing, the cisopaof one state to a
previous one involves checking for equality between atosgimbols. However,
DCGs can be thought of a generalization of non-terminal ssfrom a finite
domain of atomic elements to a possibly infinite domain ofectied graph
structures and, thus, the equality test is insufficientteld, we have to compare
terms using subsumption. As an example, considerer trmfioly naive grammar:

v a(nil) = b. vo i a(f(X)) = a(X).

By starting with the atonb, you will expect the analysis process to find that
X — f'(Inil|']). To achieve this, we can construct the following sequence of
terms:

a(nil), a(f (nil)), a(f (f (nil))), .

If we just use the former algorithm to check the subsumptibbwo terms like
f(nil) and f(f(nil)), it fails as shown in Fig.2. The loop is never detected and
the analysis process lasts forever. To create any such anse/@ave to resort to
cyclic derivations [Samuels 1993].

step 1: success step 2: success setp 3: fail

al a2 al a2 al a2
f3 fa f3 f4 f3 fa
‘X . L L
! . o ;

L ‘x L

= —

:.E

Figure 2: Trying to subsumg(nil) and f(f(nil)).

From a practical viewpoint, given a DCG, we recover its ceinteee backbone,
that is, the context-free grammar obtained by removinghallarguments from the
predicates of the grammar. It is obvious that any cyclicvdion over a DCG will
have a corresponding cyclic derivation over this skeletmn,. before checking for
a loop in the DCG itself, we shall check the context-free bacie. Once a loop
is detected, we traverse for predicate and function symiootketect whether the
analysis has returned to a previous state.

a(f(nil)) | a(f(f(nif)))

al | az

=]

Figure 3: Traversingf (nil) and f(f(nil)) after context-free loop detection.

In order to achieve this, we store the terms in a shared steuthat allows us to
easily detect whether a term occurs inside another onetla@fore, they are the
beginning and the end of a loop iteration in the analysisgsscSo, in the previous
example, the context-free backbone is

r1: a—b. ol a4 — Q.

state 4 state 1
® >S4 NP -> noun .

s noun noun

noun NP

state 0
®> .S state 2 state 3

S>.NP S->NP. NP -> NP NP .
NP > NP NP NP NP ->NP . NP NP NP -> NP . NP

NP ->. NP NP NP ->. NP NP
NP ->. noun NP ->. noun NP ->. noun
NP -> . NP ->. NP ->.

Figure 4: Characteristic finite state machine for the runningueple

and, after generating the terms

a(f(nil)), a(f (f(nil)))

we detect a context-free loop, = a. We traverse the terms as shown in Fig. 3,
concluding that the first one occurs inside the latter oneyrmang to the same
processing stateand, thus, a loop has been completed, and we have detected it.

3 THE EVALUATION SCHEMA

It is possible to efficiently guide the detection of cycliaigations on the basis of
the evaluation strategy used. On the other hand, for cyolesige in arguments,
it is first necessary that the context-free backbone givethbéyredicate symbols
determines the recognition of a same syntactic categotowitextra work for the
scanning mode. This is a key observation to solve infinite teaversal, and our
aim is to estimate which evaluation scheme is the most apipted to deal with.

We have considered three basic evaluation schema: a puogrbop architecture,
a mixed-strategy with dynamic prediction [Pereira & Warl&83], and a mixed-
strategy with static prediction [Vilares & Alonso 1998]. tinis manner, we can
compare the computational behaviour over a family of bottgnmelated evaluators
working on a same dynamic fransg .

To locate each scheme in our framework, we introduce theycaes</y ;, @ €
{1,...,ng} for each ruley, : Ao — Aia,...,Axn,, Whose meaning will be
dependent on the parsing scheme. For further details, #terean see [Vilares,
Cabrero & Alonso 1998].

1We didn’t go further in the analysis of the input, and the etlinon-terminal is the same.

3.1 A mixed-strategy with dynamic prediction

Here, the symboty, ; shows that the first categories in the right-hand-side of
rule v, have already been recognized. In addition, given a catedpry we shall
consider the associated symbdls; and A} ; to respectively indicate thaty ; is
yet to be recognized or has been already recognized. So, taim abe following
set of transitions that characterize the parsing strategy:

1. [8,0,0,] — [A4)4.0,0,]8

2. [A} g, it,it,] = [Vro(Th),it, it,]
[A], o it, it]

3. [Vk,i(fk)a“,bpa—} b= (AL ityit,]
[Vk.i(T}), it, bp,]

4. [Vkm, (Th)it, bp,]
[A} 0, bp, bp, -] = [AY it bp,]

3. [A%,i-’,-l_" it, bp, | .
[Vk’7(Tk)’ bp, ‘] — [Vk,i—!—l(Tk)v it —]

where an instance omy,;(fk) indicates that all literals until thé” literal in the
body of+, have been proved. The state, represented’hyas no operative sense
here.

3.2 A bottom-up scheme

Here, the symboty, ; expresses that the categories in the right-hand-sidg, of
after thej position have already been recognized. The set of transitg

1. M . — Vk,ny (T}i) M
2. VkilTh) Ari — Vri1(Tk)
3. Vk0(Tk) — Apo

where)M is an atom defined by giving as argument to every predicateedf PDA
a vector of new variables of appropriate length, apg;(7}) indicates that all
literals from thei’” in the body of the clause;, have been proved.

3.3 A mixed-strategy with static prediction

We requires the same interpretation for symbgls; as for bottom-up evaluation.
We define the transitions as follows:

1. [Apn,,it, bp, st] = [V (Th), it it st]
[Ak n,,it, bp, st]
{action(st, token;) = reducéy;) }
2. [Vki(Th).it,r, st .
[Ai, 7, bp, st1] > [Vk,i1(Tk), it, bp, sto]
{action(sto, token,) = shift(stq)}, ¢ € [1, ng]
3. [Vko(Th),it,bp,st] — [Ag,it, bp, sto]
{goto(stl, Akyg) = Stg}
4, [Ak,ia it, bp, Stl] — [Ak,i+1 Jit 4+ 1,14t Stﬂ
[Ak,ia ’it, bp, Stﬂ
{actior‘(stl, Ak,i+1) = Shiﬂ(stg)}, 1€ [O,Wk)
5. [Ak’i,’it,bp, St]] — [Al’g,'l't + 1,’it,8t2}
[Ak,ia it, bp, Stﬂ
{action(st;, A; o) = shift(st)}
6. [$,0,0,0] +— [Ak0,0,0, st]
[$,0,0,0]
{action(0, tokery) = shift(st)}

Control conditions are built from actions in a driver givey bBn LALR(1)
automaton built from the context-free skeleton.

3.4 Parsing a sample sentence

To introduce both, LPDA interpretation and cyclic derieats, we consider as a
running example a simple DCG to deal with the sequentiatimabf nouns in
English, as in the case dNorth Atlantic Treaty Organization! The clauses,
in which the arguments are used to build the abstract symésx tould be the
following:

Yt S(X) — np(X). Y2+ np(NP(X,Y)) — np(X) np(Y).
v3: np(X) — nounX). 4+ np(nil).

In this case, the augmented context-free skeleton is giyehebcontext-free rules:

0)® — S A (1) S — NP (2) NP — NP NP
(3) NP — noun (4) NP — ¢

whose characteristic finite state machine is shown in Fig. 4.

We are going to describe the parsing process for the simpitersge North
Atlantic’, focusing on the introduced mixed-strategy with statiediction. From
the initial predicate$ on the top of the stack, and taking into account that the
LALR automaton is in the initial state O, the first action i® tbcanning of the
word “North”, which involves pushing the itemmoun(” North”),0,1, st;] that
indicates the recognition of terrroun(” North”) between positions 0 and 1 in the
input string, with state 1 the current state in the LALR drivehis configuration is
shown in Fig. 5.

[noun(” North”), 1,0, st1]
[$, 07 07 ﬁtn}

[$) 0) 07 Sto} |_

Figure 5: Configurations during the scanning aflorth’.

At this point, we can apply transitions 1, 2 and 3 to reduce layse~y;. The
configurations involved in this reduction are shown in Fig. 6

[V311 (X)’ 1’ 17 St1}
k| [noun(” North”), 1,0, st1] |
[$a 07 0) Sto}

[Vs.0(”North”), 1,0, sto] - [np(” North”), 1,0, sts]
[$,0,0, sto] [$,0,0, sto]

Figure 6: Configuration during the reduction of clause

We can now scan the wordAtlantic’, resulting in the recognizing of the term
noun(“Atlantic") between positions 1 and 2 in the input string, with the LALR
driver in state 1. As in the case of the previous word, at tresyent we can reduce
by clauseys. This process is depicted in Fig. 7.

[noun(” Atlantic”), 2,1, st1] [V”?’J (X), _2’”2’ sti]
= - [noun(” Atlantic”), 2,1, st1]
= [np(]\;O?;)t}:)): 1,0, St?] F ['np(” N()Tth”), 1,0, Stz]
[fd) 75t0} [$’ 0,0, Sto}
[Vs.0(” Atlantic”), 2,1, sto] [np(” Atlantic”), 2,1, st3]
[[np(” North”), 1,0, sts] F [np(” North”), 1,0, sts]
[$, 0, 0, Sto] [$, 0, 07 Sto]

Figure 7: Configurations during the processing of the wo#tlantic”.

After having recognized twayp predicates, we can reduce by clausen order
to obtain a new predicatep which will represent the nominal phras&ldrth
Atlantic’. This reduction is shown in Fig. 8. The recognition of thargaete
sentence ends with a reduction by claggeobtaining the term

s(np(np(” North”,” Atlantic”)))

representing the abstract parse tree for the sentdéhoeh’ Atlantic’. The state of
the LALR driver will now be 4, which is the final state, meanth@t the processing
of this branch has finished. The resulting configurationddapcted in Fig. 9.

However, the grammar actually defines an infinite number akibte analyses
for each input sentence. If we observe the LALR automatoncavesee that in
states 0, 2 and 3 we can always reduce the clayse/hich has an empty right-
hand side, in addition to other possible shift and reducergt In particular, in
state 3 the predicatep can be generated an unbounded number of times without
consuming any character of the input string, such it is shiowkig. 10. Here, the
left-most drawing represents the cycle in the context-fraekbone, the following

the parsing process on the DCG in state 3, and the last a fiederigtion for the
infinite term traversal. Boxes represent the recognitioa gfammar category in a
given state of the LALR(1) driver.

[VQ,Z(X7 Y), 2, 2, ﬁtg}
[np(” Atlantic”), 2,1, sts3]
[np(” North”), 1,0, sts]
[$, 0, 0, Sto]

[Va21(X,” Atlantic”), 2,1, sto]
[[np(” North”),1,0, sta]
[$, 0, 0, Sto}

[Va,0(np(” North”,” Atlantic”)), 2,0, sto]
[$, 07 07 ﬁtn}

[np(np(” North”,” Atlantic”)), 2,0, sts]

F [$,0,0, sto]

Figure 8: Recognition of the nominal phrasBlorth Atlantic’.

4 DEALING WITH CYCLIC DERIVATIONS

We can now explore with greater depth into the adaptatiohefeneral loop and

cyclic detection strategies introduced in our situatech#aork to the set of parsing

schema considered in the dynamic fraste To facilitate the understanding, we
shall focus on our running example, assuming the adaptéditime other schema
in a natural manner.

[vL] (X)) 2) 2) StQ]
| [np(np(” North”,” Atlantic”)), 2, 0, sts]

[$a 01 07 Sto}
L [V1,0(np(np(” North”,” Atlantic”))), 2,0, stq]
[$7 0) 07 St()]
- [s(np(np(” North”,” Atlantic”))), 2,0, sta]
[$7 0) 07 St()]

Figure 9: Configurations for the recognizing of the sentenNerth Atlantic'.

4.1 Looking for loops

After testing the compatibility of name and arity betweer ti@rms in different
items, the algorithm establishes if the associated naniteds in the driver have
been generated in the same statevering the same portion of the text, which is
equivalent to comparing the corresponding back-poinfEnss is equivalent to test
the existence of a loop for these non-terminals in the casiter backbone.

7

. np(np(nil,np(nil,nil))) 3 S niEL[[2]) 4

[nppitninniy 3| [npeoin 3|
[npitniy 3 | [nperiy_ 3 np(npi([* [nill[* | nil)) 3

3

I i
Im%‘ﬂ
I i
Im -

E

2
‘ 5

Figure 10: Cycles in the context-free skeleton and within terms.

If all these comparisons succeed, we look for loops. Theegysferifies, one by
one, the possible occurrence of repeated terms by comphegragdresses of these
with those of the arguments of the other predicate symbat. dptimal sharing of
the interpretation guarantees that there exists commostsuittures if and only if
any of these comparisons succeed. In this last case, thetlalgstops on the pair
of arguments concerned, while continuing with the rest efalguments.

Once the context-free loop has been detected, we check d¢tic derivations in
the original DCG. The center drawing in Fig. 10 shows how #maily of terms

np(nil), np(np(nil, nil)), np(np(np(nil, nil), nil)), ..., np(np' (il 1], nil))

2This would be only necessary in the mixed-strategy withistaediction, because for the other
schema states have no operative sense.

is generated. In an analogous form, the family

np(nil), np(np(nil, nil)), np(np(nil, np(nil, nil))), . . ., np(np* (nil, [nil|']))

can be also generated. Due to the sharing of computationsettand family is
generated from the result of the first derivation, so, by meainthe successive
applications of clausesg, and,, we shall in fact generate the term on the right-
hand side of the figureyp(np' ([nil?|'],[?|'])), which corresponds exactly to the
internal representation of the tetmWe shall now describe how we detect and
represent these types of construction. In the first stagéseoparsing process,
two termsnp(nil) are generated, which are unified witlp(X) and np(Y') in

72, andnp(X,Y) is instantiated, yieldingip(np(nil,nil)). In the following
stage, the same step will be performed ovefnp(nil, nil)) andnp(nil), yielding
np(np(np(nil, nil), nil)). At this point, we consider that:

e there exists a cycle in the context-free backbone,
e we have repeated the same kind of derivation twice, and

e the latter has been applied over the result of the former.

Therefore this process can be repeated an unbounded nuhtibez®to give terms
with the formnp(np' ([nil|'], nil)). The same reasoning can be applied if we wish
to unify with the variableY”. The right-hand drawing in Fig.10 shows the compact
representation we use in this case. The fungjors considered in itself as a kind
of special variable with two arguments. Each of these arguisnean be eithenmil

or a recursive application ofp to itself. In the figure, superscripts are used to
indicate where a functor is referenced by some of its argtsnen

Loop detection is explained in detail in Fig. 11. The termsbtostudied are
intermediate structures in the computation of the proofeshdorest associated
to the successive reductions of rules 2 and 4 in the contegtgkeleton. So, we
have to compare the structures of the arguments assodigpeeldicate symbaip,
and in order to clarify the exposition, we have written thesrtermsubstitution.
The second terntg, is obtained after applying a unification step over the firg,o
t1. To show that this step is the same that we applied when hgildi, they are
shadowed. Nowt; andt, satisfy the conditions we have established to detect a
loop, namely a loop exists in the context-free backbone vamtiave repeated the
same kind of derivation twice, the latter over the resulthaf former. Thusts is
the resulting loop representation.

*We could collapse structures(nil) andnp(np' ([nil®|'],[2|'])) from the right-hand side of
Fig. 10 innp(*[n4l|np(*,')]), but this would require a non-trivial additional treatment

Reducingy,: Reducingy,:
t1 =np(X,Y) [X < nil2) Y < nil?2] ta =np(X',Y")-[X'+ t1,Y' + nil?]

np X — nil X' —glin X" —= il
x A

ts= np(X,Y) - [X < np' ([nil?|'],nil?),Y < nil?]

Figure 11: Cyclic tree traversing (1)

4.2 Cyclic subsumption and unification

Now, we shall see some examples of how the presence of cyalictsres affects
the unification and subsumption operations.

In general, a function subsumes)(another function if it has the same functor and
arity and its arguments either are equal or subsume the fothetion’s arguments.
When dealing with cyclic structures, one or more argumeatshe built from an
alternative: another term, or cycling back to the functi®uch an argument will
subsume another one if it is subsumed by at least one aliernat

np 1 X

N

X nil

nil
nil

Figure 12: mgu of substitutions involving cyclic terms.

Returning to the example of Fig. 11, we can concludetipat[nil|'],!) subsumes
np' ([nil|'],nil). Functor and aritynp/2 are the same, and so are the first
arguments,[nil|'], and for the second onefyil|!] < nil because of the first
alternative, clearlyiil < nil.

On the other hand, when calculating the mgu we also have teidemeach
alternative in the cyclic term, but discarding those thahdbmatch. Thus:

mgu({Y « [a[b]}, {Y < a}) ={Y « a}
and therefore, following the latter example:
mgunp(X, X),np" ([nil] '], nil)) = {X + nil}

which is graphically shown in Fig. 12. For better undersiagdthe matching
parts of substitutions are shadowed. Finally, we must noietathat variables are
the most general terms and so they subsume any term, evamatiites in cyclic

terms. For example:

mgunp(X), np' ([a|'])) = {X « [alnp' ([al'])}

5 EXPERIMENTAL RESULTS

For the tests we take our running example dealing with setglieation of nouns.
Given that the grammar contains a rule NPNP NP, the number of cyclic parses
grows exponentially with the length,, of the phrase. This number is:
, 1.
Co=C;=1 and On:(%)—, ifn>1
n n+1
We are not here interested in time and space bounds relateavarsing cyclic
structures [Vilares, Alonso & Cabrero 1999] since the tégqhe considered in our
situated framework is not dependent on the parsing scheetk Ust this point,
efficiency is only a consequence of the capacity of the etialuatrategy to filter

out useless items. So, we focus now on loop detection, cangpperformances
over the schema previously introduced.

We assume that lexical information is directly provided bgpecialized tagger
since only syntactic phenomena are of interest for us. s thénner, Fig. 13
shows the number of items compared in order to detect cyelivations. These
experiments have been performed$n the optimal dynamic frame in each case
[Vilares, Cabrero & Alonso 1998].

So, we can realize the efficiency of mixed-strategies inm@fing static prediction
in opposition to pure bottom-up approaches or evaluatosedan dynamic
prediction. That confirms the real interest of using a dragrguideline to deal
with cyclic derivations, as contrasted with naive substimmgbased strategies.

100000

T T T T - -
Mixed strategy with dynamic prediction —+—
Bottom-up --->--

Mixed strategy with static prediction --------

10000

1000

Number of loop tests

100 ¥

10 Il Il Il Il Il Il Il Il Il
2 4 6 8 10 12 14 16 18 20

Input length

Figure 13: Number of tests for loop detection with different parsicigema

6 CONCLUSIONS

We have discussed and described some possible solutiams tommon problems
which can cause non-termination in DCG parsing.

The first problem involves the ability of the parser for looptattion and
representation. Here, we have tackled the question fromiéwgpoint of dynamic
programming, exploiting the domain ordering, improvingukar evaluation, and
profiting from the analogy with classic context-free pagsin

The second problem is to detect and represent cyclic stagtn finite time. This
is more of a logic programming question, where often avilagorithms are
related to strategies for traversing cyclic lists. In thase, our proposal generalizes
the concept of unification to include function and predicsgebol substitution,
making use of the sharing properties in dynamic programrairsduation in order
to reduce the computational complexity.

REFERENCES
K.R. Apt and D. Pedreschi, 1990Studies in pure PROLOG: Terminatiornin

Computational Logic, vol. 1436 of Basic Research Seriegepd 50-176.
Springer-Verlag, Berlin-Heidelberg-New York.

M. Filgueiras, 1983. A PROLOG interpreter working with infinite terms
Implementations of PROLOG.

F.C.N. Pereira and D.H.D. Warren, 198®arsing as deductian In Proc. of
the 21*» Annual Meeting of the Association for Computational Lirgfigs,
pages 137-144. Cambridge, Massachusetts, U.S.A.

C. Samuels, 1993Avoiding non-termination in unification grammars$n Proc.
of 4" Int. Workshop on Natural Language Understanding and Logic
Programming, pages 4-16. Nara, Japan.

J.D. Ullman and A. van Gelder. 198&fficient tests for top-down termination of
logical rules Journal of ACM, 2(35), pages 345-373.

M. Vilares, D. Cabrero and M.A. Alonso, 1998Dynamic programming as a
frame for efficient parsingin 18" Int. Conference of SCCC, IEEE Press.,
Piscataway, NJ.

M. Vilares and M.A. Alonso, 1998.An LALR extension for DCGs in dynamic
programming In. Mathematical and Computational Analysis of Natural
Language, vol. 45 of Studies in Functional and Structuraiglistics,
pages 267-278. John Benjamin’s Publishing Company, Austerd
Philadelphia.

M. Vilares, M.A. Alonso and D. Cabrero, 1999An operational model for
parsing definite clause grammars with infinite terms Logical Aspects
of Computational Linguistics, vol. 1582 of Lecture Notes Amtificial
Intelligence. Springer-Verlag, Berlin-Heidelberg. Nefark.

Manuel Vilares Ferro is a professor at the Computer Science Department, University of A
Corufia, Campus de Elvifia s/n, 15071 A Coruiia, SPAldres@dc.fi.udc.es

David Cabrero Soutois a doctoral student at the Computer Science Department, University
of A Corufa.cabrero@dc.fi.udc.es

Miguel A. Alonso Pardo is an associated professor at the Computer Science Department,
University of A Coruiaalonso@dc.fi.udc.es

This work has been partially supported by projects XUGA 20402B97 and
PGIDT99XI110502B of the Autonomous Government of Galicia, andgatdf FD97-0047-
C04-02 by the European Community.

