
On Non-Termination in DCGs

M. Vilares Ferro
D. Cabrero Souto
M. A. Alonso Pardo

The objective of this paper is to study a practical approach to deal with non-
termination in definite clause grammars. We focus on two problems, loop and
cyclic structure detection and representation, maintaining a tight balance between
practical efficiency and operational completeness.

In order to guarantee the validity of our conclusions, we first map our study to
a common situated framework, where the effectiveness of each approach will be
examined and, later, compared by running experiments.

1 INTRODUCTION

Non-termination is a crucial problem when encoding unification-based grammar
formalisms, although practical systems often diverge fromtheir theoretical
definitions. By termination we mean here finiteness of all possible logical
derivations starting in the initial goal. Although from a theoretical point of view, we
can claim it for decidable problems, often logical problemsare confronted with the
problem that an apparently correct program may fail to terminate for certain forms
of the input. This is, typically, the case of PROLOG programs with left-recursion
on local variables.

This difference between theoretical and practical operational models is justified by
efficiency gains, assuming that this kind of situations can be usually avoided in
practical applications by alert programmers. However, thedescriptive potential
offered by unrestricted declarative programming is appreciated in language
development tasks, where a large completion domain allows the modeling effort
to be saved.

Previous works on this subject often focus on strategies forproving termination in
left-terminating programs. This is the case of [Apt & Pedresdi 1990] or [Ullman
& Van Elder 1988]. However, these studies are limited to dealwith left-recursion
in top-down resolution and do not provide a practical approach to represent infinite
derivations. A different point of view is given by Filgueiras in [Filguerias 1984],
providing effective representation for cyclic structures.

We focus on two problems that arise when working with definiteclause grammars
(DCGs), both of which can cause non-termination. The first problem is of general
interest in formal grammar theory and it concerns loop detection, when the parsing
process is repeatedly returned to the same processing state. The second problem
stems from cyclic structures and it is a consequence of non implementing the occur-
check, which would forbid unification of a variable with a term in which it occurs.
In both cases, we rely on strategies to represent cyclic derivations and structures.

Our proposal takes place in the framework of resolution strategies based on
dynamic programming, not-limited to top-down approaches,while extending the
concept of unification to composed terms. Although the key idea of dynamic
programming is to keep traces of computations to achieve computation sharing,
it also offers flexibility to investigate loop detection. Todeal with cyclic structures,
our approach refines the occur-check to minimize the time spent checking for re-
occurring variables.

2 A SITUATED FRAMEWORK

As first goal, we structure our work within a well-defined frame. This will allows us
to compare different approaches on the basis of an common descriptive formalism,
focusing on strategy-dependent features.

2.1 The parsing model

We consider a uniform parsing frame, the logical push-down automaton (LPDA),
such as it is introduced in [Vilares & Alonso 1998].

An LPDA is defined as a 7-tupleA = (X;F;�;�; $; $f ;�), whereX is a
denumerable and ordered set of variables,F is a finite set of functional symbols,�
is a finite set of extensional predicate symbols,� is a finite set of predicate symbols
used to represent the literals stored in the stack,$ is theinitial predicate, $f is the
final predicate; and� is a finite set oftransitions. Thestackof the automaton is
a finite sequence ofitems[A; it; bp; st]:�, where the top is on the left,A is in the
algebra of termsT�[F [X], � a substitution,it is the current position in the input
string, bp is the position in this input string at which we began to look for that
configuration of the LPDA, andst is a state for a driver controlling the evaluation.
Transitions are of three kinds:� Horizontal: B 7�! CfAg. Applicable to stacksE:� �, iff there exists the

most general unifier(mgu),� = mgu(E;B) such thatF� = A�, for F a
fact in the extensional database. We obtain the new stackC�:�� �.

� Pop:BD 7�! CfAg. Applicable to stacks of the formE:�E0:�0 �, iff there
is � = mgu((E;E0�); (B;D)), such thatF� = A�, for F a fact in the
extensional database. The result will be the new stackC�:�0�� �.� Push: B 7�! CBfAg. We can apply it to stacksE:� �, iff there is� = mgu(E;B), such thatF� = A�, for F a factF in the extensional
database. We obtain the stackC�:� B:� �.

whereB,C andD are items andA is in T�[F [X], a control condition to operate
the transition.

Dynamic programming is introduced by collapsing stack representations on a fixed
number ofitemsand adapting transitions in order to deal with these items. When
the correctness and completeness of computations are assured, we talk about the
concept ofdynamic frame. Here, the use ofit allows us to index the parse, which
relies on the concept ofitemset, associating a set of items to each token in the input
string. We usebp to chain pop transitions.

Two dynamic frames are of practical interest,S2 andS1, where the superscript
denotes the number of top stack elements used to generate items. The standard
dynamic frame,ST , where a stack is given by all its components, uses backtracking
to simulate non-determinism.

2.2 Cyclic structures

Conventional interpreters do not implement the occur-check in the unification
algorithm. Doing so, it is possible to unify a variable with aterm in which it
occurs, producing an infinite circular term.

To prevent this, we chose to work in the generalization of substitution to function
and predicate symbols, as initially proposed in [Filgueiras 1984]. This means
that the unification algorithm will treat symbols in the sameway as for variables:
referencing or linking them whenever they unify, and dereferencing before testing
for compatibility.

To illustrate our discussion we consider, as a classic example, terms resulting from
solving unify(X,f(X)) and unify(Y,f(f(Y))), as shown in step 1 of
Fig. 1. When using a conventional unification algorithm, without occur-check,
it will loop trying to unify X with Y .

Following now [Filgueiras 1984], the process is also shown in Fig. 1, where
we shall use! to denote a unification link from a represented symbol to its
representative. Here, the actions to be performed start by dereferencingX andY .
The unification process leads to the unification off1 with f2, since both symbols

f 1

X

f 2

f 3

Y

f 1

X f 3

Y

f 2

Y

f 3

f 2f 1

X

st
ep

 1
st

ep
 2

st
ep

 3

Figure 1: Unification of X with Y.

have the same name and arity. So, a link is set fromf1 to f2, as it is shown in
step 2 of Fig. 1. We now proceed with the unification of the argumentsX andf3.
After dereferencingX to f1 and then tof2, it results in the unification off2 andf3. As consequence, a new link is added, as it is shown in step 3 ofFig. 1. Finally,
we have to unifyf3 andY , which is dereferenced tof2 and then tof3, and it is
equal tof3. The algorithm stops here, unifyingX andY .

2.3 Loop detection

Loop detection resorts to noticing when the process is repeatedly returned to the
same processing state. In context-free parsing, the comparison of one state to a
previous one involves checking for equality between atomicsymbols. However,
DCGs can be thought of a generalization of non-terminal symbols from a finite
domain of atomic elements to a possibly infinite domain of directed graph
structures and, thus, the equality test is insufficient. Instead, we have to compare
terms using subsumption. As an example, considerer the following naı̈ve grammar:1 : a(nil)! b: 2 : a(f(X))! a(X):
By starting with the atomb, you will expect the analysis process to find thatX ! f1([nilj1]). To achieve this, we can construct the following sequence of
terms: a(nil); a(f(nil)); a(f(f(nil))); : : :
If we just use the former algorithm to check the subsumption of two terms likef(nil) andf(f(nil)), it fails as shown in Fig.2. The loop is never detected and
the analysis process lasts forever. To create any such answer, we have to resort to
cyclic derivations [Samuels 1993].

a 1

f 3

X

nil

a 2

f 4

X

X

nil

f 5

a 1

f 3

X

nil

a 2

f 4

X

X

nil

f 5

a 1

f 3

X

nil

a 2

f 4

X

X

nil

f 5

step 2: success setp 3: failstep 1: success

Figure 2: Trying to subsumef(nil) andf(f(nil)).
From a practical viewpoint, given a DCG, we recover its context-free backbone,
that is, the context-free grammar obtained by removing all the arguments from the
predicates of the grammar. It is obvious that any cyclic derivation over a DCG will
have a corresponding cyclic derivation over this skeleton.So, before checking for
a loop in the DCG itself, we shall check the context-free backbone. Once a loop
is detected, we traverse for predicate and function symbolsto detect whether the
analysis has returned to a previous state.

a 1

f 3

X

nil

a 2

f 4

X

a(f(f(nil)))a(f(nil))

Figure 3: Traversingf(nil) andf(f(nil)) after context-free loop detection.

In order to achieve this, we store the terms in a shared structure that allows us to
easily detect whether a term occurs inside another one, and,therefore, they are the
beginning and the end of a loop iteration in the analysis process. So, in the previous
example, the context-free backbone isr1 : a! b: r2 : a! a:

Φ -> S .

state 4

NP -> noun .

state 1

NP -> NP NP .
NP -> NP . NP
NP -> . NP NP
NP -> . noun
NP -> .

state 3

NP

S -> NP .
NP -> NP . NP
NP -> . NP NP
NP -> . noun
NP -> .

state 2
state 0

NP -> . NP NP

NP -> . noun

NP -> .

Φ -> . S

S -> . NP

noun

NP

S

NP

noun

noun

Figure 4: Characteristic finite state machine for the running example

and, after generating the termsa(f(nil)); a(f(f(nil)))
we detect a context-free loop,a � a. We traverse the terms as shown in Fig. 3,
concluding that the first one occurs inside the latter one, returning to the same
processing state1 and, thus, a loop has been completed, and we have detected it.

3 THE EVALUATION SCHEMA

It is possible to efficiently guide the detection of cyclic derivations on the basis of
the evaluation strategy used. On the other hand, for cycles to arise in arguments,
it is first necessary that the context-free backbone given bythe predicate symbols
determines the recognition of a same syntactic category without extra work for the
scanning mode. This is a key observation to solve infinite term traversal, and our
aim is to estimate which evaluation scheme is the most appropriated to deal with.

We have considered three basic evaluation schema: a pure bottom-up architecture,
a mixed-strategy with dynamic prediction [Pereira & Warren1983], and a mixed-
strategy with static prediction [Vilares & Alonso 1998]. Inthis manner, we can
compare the computational behaviour over a family of bottom-up related evaluators
working on a same dynamic frameS1.
To locate each scheme in our framework, we introduce the categories5k;i; i 2f1; : : : ; nkg for each rulek : Ak;0 ! Ak;1; : : : ; Ak;nk , whose meaning will be
dependent on the parsing scheme. For further details, the reader can see [Vilares,
Cabrero & Alonso 1998].

1We didn’t go further in the analysis of the input, and the reduced non-terminal is the same.

3.1 A mixed-strategy with dynamic prediction

Here, the symbol5k;i shows that the firsti categories in the right-hand-side of
rule k have already been recognized. In addition, given a categoryAk;i, we shall
consider the associated symbolsA0k;i andA00k;i to respectively indicate thatAk;i is
yet to be recognized or has been already recognized. So, we obtain the following
set of transitions that characterize the parsing strategy:

1. [$; 0; 0;] 7�! [A00;0; 0; 0;] $
2. [A0k;0; it; it;] 7�! [5k;0(~Tk); it; it;][A0k;0; it; it;]
3. [5k;i(~Tk); it; bp;] 7�! [A0k;i+1; it; it;][5k;i(~Tk); it; bp;]
4. [5k;nk(~Tk); it; bp;][A0k;0; bp; bp;] 7�! [A00k;0; it; bp;]
5. [A00k;i+1; it; bp;][5k;i(~Tk); bp; r;] 7�! [5k;i+1(~Tk); it; r;]

where an instance of5k;i(~Tk) indicates that all literals until theith literal in the
body ofk have been proved. The state, represented by “”, has no operative sense
here.

3.2 A bottom-up scheme

Here, the symbol5k;i expresses that the categories in the right-hand-side ofk
after thei position have already been recognized. The set of transitions is:1: M 7�! 5k;nk(~Tk) M2: 5k;i(~Tk) Ak;i 7�! 5k;i�1(~Tk)3: 5k;0(~Tk) 7�! Ak;0
whereM is an atom defined by giving as argument to every predicate of the LPDA
a vector of new variables of appropriate length, and5k;i(~Tk) indicates that all
literals from theith in the body of the clausek, have been proved.

3.3 A mixed-strategy with static prediction

We requires the same interpretation for symbols5k;i as for bottom-up evaluation.
We define the transitions as follows:

1. [Ak;nk ; it; bp; st] 7�! [5k;nk(~Tk); it; it; st][Ak;nk ; it; bp; st]faction(st; tokenit) = reduce(k)g
2. [5k;i(~Tk); it; r; st1][Ak;i; r; bp; st1] 7�! [5k;i�1(~Tk); it; bp; st2]faction(st2; tokenit) = shift(st1)g; i 2 [1; nk]
3. [5k;0(~Tk); it; bp; st1] 7�! [Ak;0; it; bp; st2]fgoto(st1; Ak;0) = st2g
4. [Ak;i; it; bp; st1] 7�! [Ak;i+1; it+ 1; it; st2][Ak;i; it; bp; st1]faction(st1; Ak;i+1) = shift(st2)g; i 2 [0; nk)
5. [Ak;i; it; bp; st1] 7�! [Al;0; it+ 1; it; st2][Ak;i; it; bp; st1]faction(st1; Al;0) = shift(st2)g
6. [$; 0; 0; 0] 7�! [Ak;0; 0; 0; st][$; 0; 0; 0]faction(0; token0) = shift(st)g

Control conditions are built from actions in a driver given by an LALR(1)
automaton built from the context-free skeleton.

3.4 Parsing a sample sentence

To introduce both, LPDA interpretation and cyclic derivations, we consider as a
running example a simple DCG to deal with the sequentialization of nouns in
English, as in the case of“North Atlantic Treaty Organization”. The clauses,
in which the arguments are used to build the abstract syntax tree, could be the
following:1 : s(X) ! np(X): 2 : np(np(X;Y)) ! np(X) np(Y):3 : np(X) ! noun(X): 4 : np(nil):
In this case, the augmented context-free skeleton is given by the context-free rules:(0) � ! S a (1) S ! NP (2) NP ! NP NP(3) NP ! noun (4) NP ! "
whose characteristic finite state machine is shown in Fig. 4.

We are going to describe the parsing process for the simple sentence “North
Atlantic”, focusing on the introduced mixed-strategy with static prediction. From
the initial predicate$ on the top of the stack, and taking into account that the
LALR automaton is in the initial state 0, the first action is the scanning of the
word “North”, which involves pushing the item[noun("North"); 0; 1; st1] that
indicates the recognition of termnoun("North") between positions 0 and 1 in the
input string, with state 1 the current state in the LALR driver. This configuration is
shown in Fig. 5. [$; 0; 0; st0] ` [noun("North"); 1; 0; st1][$; 0; 0; st0]

Figure 5: Configurations during the scanning of “North”.

At this point, we can apply transitions 1, 2 and 3 to reduce by clause3. The
configurations involved in this reduction are shown in Fig. 6.` [r3;1(X); 1; 1; st1][noun("North"); 1; 0; st1][$; 0; 0; st0] ` [r3;0("North"); 1; 0; st0][$; 0; 0; st0] ` [np("North"); 1; 0; st2][$; 0; 0; st0]

Figure 6: Configuration during the reduction of clause3.
We can now scan the word “Atlantic”, resulting in the recognizing of the termnoun(\Atlantic00) between positions 1 and 2 in the input string, with the LALR
driver in state 1. As in the case of the previous word, at this moment we can reduce
by clause3. This process is depicted in Fig. 7.` [noun("Atlantic"); 2; 1; st1][np("North"); 1; 0; st2][$; 0; 0; st0] ` [r3;1(X); 2; 2; st1][noun("Atlantic"); 2; 1; st1][np("North"); 1; 0; st2][$; 0; 0; st0]` [r3;0("Atlantic"); 2; 1; st2][np("North"); 1; 0; st2][$; 0; 0; st0] ` [np("Atlantic"); 2; 1; st3][np("North"); 1; 0; st2][$; 0; 0; st0]

Figure 7: Configurations during the processing of the word “Atlantic”.

After having recognized twonp predicates, we can reduce by clause2 in order
to obtain a new predicatenp which will represent the nominal phrase “North
Atlantic”. This reduction is shown in Fig. 8. The recognition of the complete
sentence ends with a reduction by clause1, obtaining the terms(np(np("North"; "Atlantic")))

representing the abstract parse tree for the sentence “North Atlantic”. The state of
the LALR driver will now be 4, which is the final state, meaningthat the processing
of this branch has finished. The resulting configurations aredepicted in Fig. 9.

However, the grammar actually defines an infinite number of possible analyses
for each input sentence. If we observe the LALR automaton, wecan see that in
states 0, 2 and 3 we can always reduce the clause4, which has an empty right-
hand side, in addition to other possible shift and reduce actions. In particular, in
state 3 the predicatenp can be generated an unbounded number of times without
consuming any character of the input string, such it is shownin Fig. 10. Here, the
left-most drawing represents the cycle in the context-freebackbone, the following
the parsing process on the DCG in state 3, and the last a finite description for the
infinite term traversal. Boxes represent the recognition ofa grammar category in a
given state of the LALR(1) driver.` [r2;2(X;Y); 2; 2; st3][np("Atlantic"); 2; 1; st3][np("North"); 1; 0; st2][$; 0; 0; st0]` [r2;1(X; "Atlantic"); 2; 1; st2][np("North"); 1; 0; st2][$; 0; 0; st0]` [r2;0(np("North"; "Atlantic")); 2; 0; st0][$; 0; 0; st0]` [np(np("North"; "Atlantic")); 2; 0; st2][$; 0; 0; st0]

Figure 8: Recognition of the nominal phrase “North Atlantic”.

4 DEALING WITH CYCLIC DERIVATIONS

We can now explore with greater depth into the adaptation of the general loop and
cyclic detection strategies introduced in our situated framework to the set of parsing
schema considered in the dynamic frameS1. To facilitate the understanding, we
shall focus on our running example, assuming the adaptationto the other schema
in a natural manner.

` [r1;1(X); 2; 2; st2][np(np("North"; "Atlantic")); 2; 0; st2][$; 0; 0; st0]` [r1;0(np(np("North"; "Atlantic"))); 2; 0; st0][$; 0; 0; st0]` [s(np(np("North"; "Atlantic"))); 2; 0; st4][$; 0; 0; st0]
Figure 9: Configurations for the recognizing of the sentence “North Atlantic”.

4.1 Looking for loops

After testing the compatibility of name and arity between two terms in different
items, the algorithm establishes if the associated non-terminals in the driver have
been generated in the same state2, covering the same portion of the text, which is
equivalent to comparing the corresponding back-pointers.This is equivalent to test
the existence of a loop for these non-terminals in the context-free backbone.

ε

np(nil) 3

ε

np(nil) 3

ε

NP 3

ε

NP 3

ε

NP 3 ε

np(nil) 3np(np(nil,nil),nil) 3

ε

np(nil) 3

s(np¹([¹ | nil²],[¹ | ²])) 4

np(nil) 3

np(nil,nil) 3

np(np(nil,np(nil,nil))) 3

np(np¹([¹ | nil],[¹ | nil])) 3

Figure 10: Cycles in the context-free skeleton and within terms.

If all these comparisons succeed, we look for loops. The system verifies, one by
one, the possible occurrence of repeated terms by comparingthe addresses of these
with those of the arguments of the other predicate symbol. The optimal sharing of
the interpretation guarantees that there exists common sub-structures if and only if
any of these comparisons succeed. In this last case, the algorithm stops on the pair
of arguments concerned, while continuing with the rest of the arguments.

Once the context-free loop has been detected, we check for cyclic derivations in
the original DCG. The center drawing in Fig. 10 shows how the family of termsnp(nil); np(np(nil; nil)); np(np(np(nil; nil); nil)); : : : ; np(np1([nilj1]; nil))

2This would be only necessary in the mixed-strategy with static prediction, because for the other
schema states have no operative sense.

is generated. In an analogous form, the familynp(nil); np(np(nil; nil)); np(np(nil; np(nil; nil))); : : : ; np(np1(nil; [nilj1]))
can be also generated. Due to the sharing of computations thesecond family is
generated from the result of the first derivation, so, by means of the successive
applications of clauses2 and4, we shall in fact generate the term on the right-
hand side of the figure,np(np1([nil2j1]; [2j1])), which corresponds exactly to the
internal representation of the term3. We shall now describe how we detect and
represent these types of construction. In the first stages ofthe parsing process,
two termsnp(nil) are generated, which are unified withnp(X) andnp(Y) in2, and np(X;Y) is instantiated, yieldingnp(np(nil; nil)). In the following
stage, the same step will be performed overnp(np(nil; nil)) andnp(nil), yieldingnp(np(np(nil; nil); nil)). At this point, we consider that:� there exists a cycle in the context-free backbone,� we have repeated the same kind of derivation twice, and� the latter has been applied over the result of the former.

Therefore this process can be repeated an unbounded number of times to give terms
with the formnp(np1([nilj1]; nil)). The same reasoning can be applied if we wish
to unify with the variableY . The right-hand drawing in Fig.10 shows the compact
representation we use in this case. The functornp is considered in itself as a kind
of special variable with two arguments. Each of these arguments can be eithernil
or a recursive application ofnp to itself. In the figure, superscripts are used to
indicate where a functor is referenced by some of its arguments.

Loop detection is explained in detail in Fig. 11. The terms tobe studied are
intermediate structures in the computation of the proof shared-forest associated
to the successive reductions of rules 2 and 4 in the context-free skeleton. So, we
have to compare the structures of the arguments associated to predicate symbolnp,
and in order to clarify the exposition, we have written them as term�substitution.
The second term,t2, is obtained after applying a unification step over the first one,t1. To show that this step is the same that we applied when building t1, they are
shadowed. Now,t1 andt2 satisfy the conditions we have established to detect a
loop, namely a loop exists in the context-free backbone, andwe have repeated the
same kind of derivation twice, the latter over the result of the former. Thus,t3 is
the resulting loop representation.

3We could collapse structuresnp(nil) andnp(np1([nil2j1]; [2j1])) from the right-hand side of
Fig. 10 innp(1[niljnp(1;1)]), but this would require a non-trivial additional treatment.

Reducing2:t1 � np(X;Y)��X nil2; Y nil2�
np

X Y

X

Y

nil

Reducing2:t2 � np(X 0; Y 0)��X 0 t1; Y 0 nil2�
np

X’ Y’

X’’ nil

Y’’

Y’

X’’ Y’’

X’ np

t3 � np(X;Y) � �X np1([nil2j1]; nil2); Y nil2�
np

X Y

X

Y

nil

Figure 11: Cyclic tree traversing (1)

4.2 Cyclic subsumption and unification

Now, we shall see some examples of how the presence of cyclic structures affects
the unification and subsumption operations.

In general, a function subsumes (�) another function if it has the same functor and
arity and its arguments either are equal or subsume the otherfunction’s arguments.
When dealing with cyclic structures, one or more arguments can be built from an
alternative: another term, or cycling back to the function.Such an argument will
subsume another one if it is subsumed by at least one alternative.

np X

X nil
nil

nil

Figure 12: mgu of substitutions involving cyclic terms.

Returning to the example of Fig. 11, we can conclude thatnp1([nilj1];1) subsumesnp1([nilj1]; nil). Functor and arity,np=2 are the same, and so are the first
arguments,[nilj1], and for the second ones,[nilj1] � nil because of the first
alternative, clearlynil � nil.

On the other hand, when calculating the mgu we also have to consider each
alternative in the cyclic term, but discarding those that donot match. Thus:

mgu(fY [ajb]g; fY ag) = fY ag
and therefore, following the latter example:

mgu(np(X;X); np1([nilj1]; nil)) = fX nilg
which is graphically shown in Fig. 12. For better understanding, the matching
parts of substitutions are shadowed. Finally, we must not forget that variables are
the most general terms and so they subsume any term, even alternatives in cyclic
terms. For example:

mgu(np(X); np1([aj1])) = fX [ajnp1([aj1])g
5 EXPERIMENTAL RESULTS

For the tests we take our running example dealing with sequentialization of nouns.
Given that the grammar contains a rule NP! NP NP, the number of cyclic parses
grows exponentially with the length,n, of the phrase. This number is:C0 = C1 = 1 and Cn = 2nn ! 1n+ 1 ; if n > 1
We are not here interested in time and space bounds related totraversing cyclic
structures [Vilares, Alonso & Cabrero 1999] since the technique considered in our
situated framework is not dependent on the parsing scheme used. At this point,
efficiency is only a consequence of the capacity of the evaluation strategy to filter
out useless items. So, we focus now on loop detection, comparing performances
over the schema previously introduced.

We assume that lexical information is directly provided by aspecialized tagger
since only syntactic phenomena are of interest for us. In this manner, Fig. 13
shows the number of items compared in order to detect cyclic derivations. These
experiments have been performed onS1, the optimal dynamic frame in each case
[Vilares, Cabrero & Alonso 1998].

So, we can realize the efficiency of mixed-strategies incorporating static prediction
in opposition to pure bottom-up approaches or evaluators based on dynamic
prediction. That confirms the real interest of using a driveras guideline to deal
with cyclic derivations, as contrasted with naı̈ve subsumption-based strategies.

10

100

1000

10000

100000

2 4 6 8 10 12 14 16 18 20

N
u

m
b

er
 o

f
lo

o
p

 t
es

ts

Input length

Mixed strategy with dynamic prediction
Bottom-up

Mixed strategy with static prediction

Figure 13: Number of tests for loop detection with different parsingschema

6 CONCLUSIONS

We have discussed and described some possible solutions to two common problems
which can cause non-termination in DCG parsing.

The first problem involves the ability of the parser for loop detection and
representation. Here, we have tackled the question from theviewpoint of dynamic
programming, exploiting the domain ordering, improving tabular evaluation, and
profiting from the analogy with classic context-free parsing.

The second problem is to detect and represent cyclic structures in finite time. This
is more of a logic programming question, where often available algorithms are
related to strategies for traversing cyclic lists. In this case, our proposal generalizes
the concept of unification to include function and predicatesymbol substitution,
making use of the sharing properties in dynamic programmingevaluation in order
to reduce the computational complexity.

REFERENCES

K.R. Apt and D. Pedreschi, 1990.Studies in pure PROLOG: Termination. In
Computational Logic, vol. 1436 of Basic Research Series, pages 150-176.
Springer-Verlag, Berlin-Heidelberg-New York.

M. Filgueiras, 1983. A PROLOG interpreter working with infinite terms.
Implementations of PROLOG.

F.C.N. Pereira and D.H.D. Warren, 1983.Parsing as deduction. In Proc. of
the21th Annual Meeting of the Association for Computational Linguistics,
pages 137-144. Cambridge, Massachusetts, U.S.A.

C. Samuels, 1993.Avoiding non-termination in unification grammars. In Proc.
of 4th Int. Workshop on Natural Language Understanding and Logic
Programming, pages 4-16. Nara, Japan.

J.D. Ullman and A. van Gelder. 1988.Efficient tests for top-down termination of
logical rules. Journal of ACM, 2(35), pages 345-373.

M. Vilares, D. Cabrero and M.A. Alonso, 1998.Dynamic programming as a
frame for efficient parsing. In 18th Int. Conference of SCCC, IEEE Press.,
Piscataway, NJ.

M. Vilares and M.A. Alonso, 1998.An LALR extension for DCGs in dynamic
programming. In. Mathematical and Computational Analysis of Natural
Language, vol. 45 of Studies in Functional and Structural Linguistics,
pages 267-278. John Benjamin’s Publishing Company, Amsterdam &
Philadelphia.

M. Vilares, M.A. Alonso and D. Cabrero, 1999.An operational model for
parsing definite clause grammars with infinite terms. In Logical Aspects
of Computational Linguistics, vol. 1582 of Lecture Notes inArtificial
Intelligence. Springer-Verlag, Berlin-Heidelberg.New-York.

Manuel Vilares Ferro is a professor at the Computer Science Department, University of A
Coruña, Campus de Elviña s/n, 15071 A Coruña, SPAIN.vilares@dc.fi.udc.es.

David Cabrero Souto is a doctoral student at the Computer Science Department, University
of A Coruña.cabrero@dc.fi.udc.es.

Miguel A. Alonso Pardo is an associated professor at the Computer Science Department,
University of A Coruña.alonso@dc.fi.udc.es.

This work has been partially supported by projects XUGA 20402B97 and
PGIDT99XI10502B of the Autonomous Government of Galicia, and project 1FD97-0047-
C04-02 by the European Community.

