

Analogy-based Method

 for Semantic Clustering

Gerardo Sierra,

John McNaught

An analogy-based clustering method is proposed, through the alignment of

definitions from two different sources. The method relies on the assumption that

two authors use different words to express a definition. The algorithm

introduced here is analogy-based, and starts from calculating the Levenshtein

distance, which is a variation of the edit distance, and allows us to align the

definitions. As a measure of similarity, the concept of longest collocation couple

is introduced, which is the basis of clustering similar words. The process

iterates, replacing similar pairs of words in the definitions until no new clusters

are found.

1 INTRODUCTION

The primary goal of clustering is to collect together into clusters a set of

elements associated by some common characteristic. Each element or member

within a cluster A is strongly associated with each other because they share the

same property, while members of other clusters show distinct characteristics

from those of A. According to Gordon [1981], clustering may alternatively be

oriented either to discover the strongest association among members or to seek

members which are isolated from each other. Clustering is often based on

measurements of the similarity or dissimilarity between a pair of objects, these

objects being either single members or other clusters.

Clustering methods to identify semantically similar words are usually divided in

relation-based and distribution-based approaches [Hirawaka, Xu and Haase

1996]. The former analyse relations in an ontology, while the latter use

statistical analysis. According to the terminology of Grefenstette [1996], these

methods can be called knowledge–rich, based on a conceptual dependency

representation, and knowledge-poor, based on distributional analysis.

Relation-based clustering methods rely on the relations in a semantic network or

ontology to judge the similarity between two concepts. Since an ontology

connects concepts, each located in a node, it is then possible to analyse either

the taxonomic relations or just the conceptual distance between the nodes. A

taxonomy lets us extract semantic relations, such as is-a or a-kind-of

[Chakravarthy 1994], to judge the similarity between two concepts by

comparing their parent. A semantic network lets us derive similarity by

determining the path-length or number of links between the nodes.

The ontologies WordNet [Miller et al 1990] and Roget’s thesaurus [Roget 1987]

have been used to cluster similar concepts, either by measuring the shortest

length that connects two concepts in the hierarchical net [Agirre and Rigau

1996], or by comparing the information content shared by the members under

the same cluster [Morris and Hirst 1991, Resnik 1997]. However, even although

these ontologies describe a huge number of members for a cluster, few words of

a category may be interchangeable in the same context and then used as

members of the same cluster. This means that not all words in a category are

necessary.

Conversely to the semantic relations extracted from an ontology, distribution-

based clustering methods depend on pure statistical analysis of the lexical

occurrences in running texts. The basis for the statistical approach is that

similarity of words can be judged by analysing the similarity of the surrounding

context in which they occur, since it has been observed that two synonym words

share similar context when they occur separately.

The use of statistical techniques to find similar words faces difficulties when it

is fully automated, and new methods attempt insofar as possible to solve these

difficulties. Earlier studies encountered drawbacks with the treatment of

independent variant forms, such as spelling variation and inflectional endings of

words [Adamson and Boreham 1974]. Although most corpus analysis software

allows us to analyse variations of a word in the same utterance, it requires

additional effort that reduces the efficiency of the method.

A major drawback is that distribution-based methods require us to process a

large amount of data in order to get more reliable results [Habert et al 1996;

Arranz 1997]. Moreover, the use of large corpora is not always practical, due to

economic, time or capabilities factors. The consequences for lacking large

corpora include results based on low-frequency words, which are quite

unrepresentative for clustering. Grefenstette [1996] suggests that a mixture of

different methods, rather than any single statistical technique, may be adapted to

be usefully applied to all ranges of frequency of words encountered in a corpus:

for more frequent words, finer grained context discrimination; for less frequent

words, using windows of N words; for rare words, examining large windows,

even to entire document level.

From a methodological point of view, there is, in addition to the above two

approaches, a little known approach called the analogy-based approach. This

employs an inferential process and is used in computational linguistics and

artificial intelligence as an alternative to current rule-based linguistic models.

Jones [1996] suggests corpus alignment as a feasible analogy-based approach.

In order to align two sentences in the same language, Waterman [1996] uses a

technique for measuring the similarity between lexical strings, named edit

distance. This matches the words of two sentences in linear order and

determines their correspondence. However, syntactic differences affect the

alignment when using purely edit distance. Therefore, Waterman suggests

further extensions to the basic edit distance, such as using a part-of-speech

tagger and then splitting the original sentences into more similar sub-sentences.

Taking into account Waterman´s studies, we propose an analogy-based method

to identify automatically semantic clusters. The difference in words used

between two or more lexicographic definitions enabled us to infer paradigms by

merging the dictionary definitions into a single database and then using our own

alignment technique.

2 ALGORITHMS

Our algorithms are used in an overall system whose aim is to allow the user to

find terms by giving a description of a concept. Lexicographic and

terminological definitions constitute the main lexical resources. Our algorithms

cluster words that are used in the same context, thus operate on pairs of

definitions for a same entry word, drawn from two different dictionaries. If

dictionary I does not have an entry word that exists in dictionary J, then this

entry word is omitted from consideration. In order to balance the number of

strings when an entry word in the dictionary I has two or more senses, the entry

word in dictionary J is repeated as many times as necessary to equal the number

of senses of dictionary I. We thus derive two files I and J containing an equal

number of strings S1 and S2, respectively. Each string consists of an entry term

followed by its definition, the definition giving only one sense of the entry term.

For each string S1 there is a string S2.

In order to compare two strings of words, we use the Levenshtein distance

[Levenshtein 1966], a similar method to the edit distance. Both methods

measure the edit transformations that change one string into other. The

Levenshtein distance also arranges the strings in a matrix, with the words of S1

heading the columns and those of S2 heading the rows. A null word is inserted at

the beginning of each string S1 and S2, in position i=0, j=0. The matrix is filled

with the costs of insertion, deletion and substitution using the same formula as

the edit distance, but differing in that the cost of substitution is 1, instead of 2 as

proposed by the edit distance.

Experimental results have shown that the application of the Levenshtein

distance using stem forms gives better matches than using full forms. Therefore,

we shall fill the matrix with the cost for the stem forms, although the strings

preserve the full forms both for the following steps and in the output table.

Given the strings S1 and S2 consisting of full forms, with |S1| = n, |S2| = m the

number of words, and sf1[i], sf2[j] referring to the i
th
 and j

th
 stemmed forms of S1

and S2, respectively, the algorithm to calculate the cost, cost[i][j], is as follows:

for i:=0 to n do cost[i][0] := i;

for j:=0 to m do cost[0][j] := j;

for i:=1 to n do

 for j:=1 to m do begin

 /* if the stem forms are equal */

 if (sf1 [i] = sf2 [j]) then

 cost[i][j] := min(cost[i-1][j] + 1, cost[i][j-1] + 1, cost[i-1][j-1])

 else

 cost[i][j] := min(cost[i-1][j] + 1, cost[i][j-1] + 1, cost[i-1][j-1] + 1)

 end

Building on the Levenshtein distance, Wagner and Fisher [1974] propose a

dynamic programming method to align the elements of two strings. Their

procedure to return the ordered pairs of the alignment starts with the last cell of

the matrix with cost[n][m] and works back until either i or j equals 0, according

to which of its neighbours a cell was derived from. If it is derived either from

the previous horizontal or vertical cell ([i-1][j] or [i][j-1] respectively) then the

difference in cost is just 1, otherwise it is derived from the diagonal. Table 1

shows the situation after construction of the matrix for the pair of strings S1 and

S2; the highlighted cells show the best alignment according to Wagner &

Fisher's algorithm.

S1: alkalimeter an apparatus for determining the concentration of alkalis in a solution.

S2: alkalimeter an instrument for ascertaining the amount of alkali in a solution.

Table 1. Levenshtein distance for “alkalimeter”

 -- alkalimeter an apparatus for determining the concentration of alkalis in solution

-- 0 1 2 3 4 5 6 7 8 9 10 11
alkalimeter 1 0 1 2 3 4 5 6 7 8 9 10
an 2 1 0 1 2 3 4 5 6 7 8 9
instrument 3 2 1 1 2 3 4 5 6 7 8 9
for 4 3 2 2 1 2 3 4 5 6 7 8
ascertaining 5 4 3 3 2 2 3 4 5 6 7 8
the 6 5 4 4 3 3 2 3 4 5 6 7
amount 7 6 5 5 4 4 3 3 4 5 6 7
of 8 7 6 6 5 5 4 4 3 4 5 6
alkali 9 8 7 7 6 6 5 5 4 3 4 5
in 10 9 8 8 7 7 6 6 5 4 3 4
a 11 10 9 9 8 8 7 7 6 5 4 4
solution 12 11 10 10 9 9 8 8 7 6 5 4

The alignment gives us a list of triplets formed by (ffi,, ffj, cost[i][j]), in

decreasing order according to cost[i][j], where ffi, and ffj are full forms from the

strings S1 and S2, respectively. There are three possible pairings of words:

• “Equal couple” is defined as the pair (ffi, ffj) of full forms such that the

corresponding stem forms are equal (sfi = sfj). With respect to the Levenshtein

distance, this means these words do not need any change to make both equal, as their

stems are equal.

• “Matched couple” is a pair (ffi, ffj) such that sfi ≠ sfj. This couple represents a
potential pair of similar words. In terms of the Levenshtein distance, we shall replace

one word with the other progressively to change one string into the other.

• “Null couple” is a pair (ffi, ffj) such that sfi or sfj is missing. This means we must

either insert one word into the given string or delete it from the given string, to

change one string into the other.

Table 2 shows the list of triplets for strings S1 and S2 derived from the matrix of

table 1. It also shows the equal, matched and null couples that have been found.

Table 2. List of triplets for “alakalimeter”

ffi ffj cost[i][j] kind of couple

solution solution 4 equal couple

-- a 4 null couple

in in 3 equal couple

alkalis alkali 3 equal couple

of of 3 equal couple

concentration amount 3 matched couple

the the 2 equal couple

determining ascertaining 2 matched couple

for for 1 equal couple

apparatus instrument 1 matched couple

an An 0 equal couple

alkalimeter alkalimeter 0 equal couple

The purpose of clustering is to match different pairs of words (matched

couples), thus neither pairs of equal words (equal couples) nor pairs with a null

word (null couples) are relevant.

As a measure of the similarity between a matched couple, one can quantify the

surrounding equal couples above and below it. This concept is similar to the

“longest common subsequence” of two strings suggested by Wagner and Fisher

[1974], which is defined as the common subsequence of two strings having

maximal length, although in our case both strings differ by the single matched

couple. By analogy, we use longest collocation couple, henceforth abbreviated

lcc, since we refer to couples instead of a single string. Besides, the word

“collocation” is more representative for a pair of words and their

neighbourhood, being the core of two longest common subsequences. We define

longest collocation couple as the maximal sequence of pairs of words formed by

equal couples surrounding a matched couple.

Given the alignment of the strings S1 and S2 consisting of a list of triplets formed

by (ffi,, ffj, cost[i][j]), in decreasing order according to cost[i][j], where ffi, and

ffj are, respectively, full forms from S1 and S2, the lcc is the longest consecutive

sequence of triplets (ffi,, ffj, cost[i][j]) formed by one matched couple, such that

it meets 3 conditions:

1. The cost difference between the first triplet and the last triplet is 1. As the lcc

contains only one matched couple, by this condition the matched couple becomes

the core of a longest common subsequence. This implies having at least two triplets,

where the cost of the matched couple is a unity more than the couple immediately

below.

2. There is no null couple. The pair of words immediately above a null couple is, when

it exists, an equal couple, the difference of cost between the two pairs being equal to

0. However, it is used as a restriction since it is equivalent to a matched couple by

the fact that the cost difference regarding the couple immediately below is 1.

Therefore, by definition, a null couple can never be the core of a lcc.

3. The matched couple is neither the first nor the last triplet. By this condition, we

constrain a matched couple to be between two or more equal couples, and eliminate

the possibility that the matched couple appears at the beginning or end of a phrase.

As a result, we get a new triplet (ffi, ffj, lccij), where (ffi, ffj) is the matched

couple and lccij is the length of the longest collocation couple. More than one

lcc may be found for any pair of strings. Ranking all triplets found by lcc in

decreasing order, we observe that the greater the value of lcc, the greater the

similarity between the words of the matched couple.

So far, function words and other noise words will also be clustered by our

algorithms. In general, such words interfere in the identification of clusters and

can give more wrong than good results. Therefore, we use a stoplist to

automatically identify any pair of words where a non-relevant word appears and

exclude it, on the grounds that they are not very useful words for clustering.

Thus, when the program comes across a matched pair of different words in a

context and if that matched pair contains a word from the stoplist, then the pair

is rejected. Essentially, this is the same thing as using a tagger and looking at

the tags as well as the words, since one would not want to choose a noun pairing

with a determiner or a relative.

By inspection, we observe that, after stoplist discrimination, the best potential

clusters are found at higher values of lcc. Experimental results show us that a

length of lcc equal to 5 is a reliable threshold. Although there are also good

matches for values equal to 4 and 3, the majority of these are duplicates of

higher values.

We introduce the term binding to represent a candidate cluster, i.e. two words

that may be used in the same context without changing the meaning of a

definition. A binding is a matched couple (ff1, ff2) formed by the full forms ff1

and ff2, after stoplist discrimination, drawn from the strings S1 and S2,

respectively, in such a way that the stem forms are equivalent, in a determined

context, according to a determined threshold. The threshold associated with a

binding is the length of the lcc, and we consider only bindings of matched

couples where lcc ≥ 5 (see table 6).
Each binding can be considered as an initial cluster. Clusters represent sets of

words that are used with the same meaning in particular contexts. In a

consecutive sequence of bindings, it may happen that a stem form occurs in two

or more different bindings. In this case, one can cluster all bindings with a

common stem form according to the transitive property.

In order to cluster bindings, we use an algorithm consisting of three loops. First,

it assigns a cluster number to each binding, so those bindings with a common

word have the same cluster number. Secondly, it clusters bindings with the same

cluster number, but removes duplicate stem forms in the same cluster. Thirdly,

it checks if it is possible to merge new clusters with those of previous cycles.

Merged clusters are represented as a list of binary trees. Column 1 of table 3

shows the merged clusters found after cycle i, column 2 shows the clusters

found during cycle i+1, and column 3 shows the new merged clusters formed by

merging those of column 2 with those of column 1, at the end of cycle i+1. The

lists of new clusters found in a cycle are processed one at a time. Each member

of each such list is taken and its stem form is searched in the list of binary trees.

Whenever a match is found in a tree (only one match is necessary) all other

words in that list are added to this tree, omitting any that are already present.

Use of binary trees not only cuts down on search time but also allows clusters to

be easily printed out in alphabetical order when required. This process will

typically result in a set of overlapping clusters, reflecting the natural state where

concepts may belong to more than one conceptual class.

As bindings represent pairs of words such that the stem forms can be substituted

in a particular context without changing the meaning, sf1 = sf2, we can replace

any of the full forms ffi with the full forms ffj according to each binding, so that

the corresponding definition preserves the same meaning. After substituting

bindings, we observe that several pairs of words will now typically present a

high lcc score, even those pairs of words which initially did not yield matches

with any word. It is then advantageous to replace thus the bindings in the

definitions and to repeat the entire process until no new clusters are found. The

first cycle runs from the reading of definitions up to merging of clusters. All

subsequent cycles will start by replacing retained bindings in the definitions,

thus each subsequent cycle works with new data.

Table 3. Merging clusters

Merged clusters after cycle i New clusters at cycle i+1 Merged clusters after cycle i+1

1: direction inclination

2: instrument telescope

3: swinging turning

4: amount intensity rate

strength

5: celestial heavenly

6: determining measuring

7: sunlight day

8: method system

9: limits field

10: measuring taking

ascertaining testing

determining

11: amount percentage

1: field limits

2: method system

3: day sunlight

4: direction inclination

5: instrument telescope

6: swinging turning

7: amount intensity percentage

rate strength

8: celestial heavenly

9: ascertaining determining

measuring taking testing

3 EXPERIMENT RESULTS

Our experiments focus on 314 terms for measuring instruments extracted with

their definitions from CED [1994] and OED2 [1994], resulting in 387 strings

from each dictionary. The strings consist of the entry term and the definition, so

that etymology, part of speech, inflected forms of the entry term, examples and

other information were deleted. Subject-field labels, such as ‘astronomy’ and

‘meteorology’, were preserved, either in full or slightly abbreviated, as they are

helpful to resolve which sense of a word to choose, and usually constitute a

fundamental property of the concept.

It should be noted that none of the 387 strings suffered any additional

transformation, apart from a few cases in order to complete a definition when it

had been broken in two parts by the dictionary editor, such as when a core

meaning appears just once at the beginning of several subsequent senses.

Although some abbreviations (‘U.S.A.’), initials of proper names (‘C.T.R.

Wilson’) and possessives (‘sun's rays’) will come out as two or more words

after deleting punctuation marks and therefore can alter the efficiency of the

algorithm, they were preserved to observe their effect.

We used the stemming algorithm of Porter [1980], which removes endings from

words. This algorithm, widely used in IR, was chosen because it performs

slightly better than other similar algorithms. It should be noted that the Porter

algorithm causes some overstemming and understemming. The risk of

overstemming is low, since there is a low probability of having two different

full forms in the same definition with the same stem form. Understemming is

more probable and can cause some words not to match, but the proposed

clustering procedure will eventually match them, due to cyclic replacement.

Table 4 presents the bindings for the corpus on measuring instruments after

removing both stop words and matched couples with lcc < 5. For simplicity

here, we have also deleted duplicate bindings and preserved just those with

higher lcc scores.

Table 4. Bindings with lcc ≥ 5

ffi ffj lccij ffi ffj lccij

determining measuring 9

celestial heavenly 8

intensity amount 8

swinging turning 8

inclination direction 7

instrument telescope 7

amount percentage 6

determining ascertaining 6

limits field 6

measuring taking 6

measuring ascertaining 6

method system 6

sunlight day 6

testing measuring 6

accurate precise 5

analyse recording 5

apparatus instrument 5

concentration strength 5

concentration amount 5

conditions variations 5

frequency wavelength 5

heights distances 5

mass weight 5

measurement location 5

radio hyperbolic 5

recording measuring 5

specific set 5

tracing observing 5

Table 5 presents the cluster results after two cycles of the clustering procedure

starting from the Levenshtein distance. The procedure then stops, as no more

matched words with lcc ≥ 5 have been found for our data.

In order not to manipulate the strings to retrieve biased clusters, definitions

were not modified beyond the pre-processing described. In fact, entry words

were chosen randomly, but always in the domain of measuring instruments.

Although good precision is observable in the clusters, there are still some

relevant words in the strings that are semantically similar to some of those of

the clusters. For example, the word ‘device’ is frequently used instead of

‘instrument’, but because of the definition of lcc, the matched couple (device

instrument) rarely can be a binding for clustering, as the preceding determiner

of each word is different. The former use ‘a’, while the latter use ‘an’ and

unfortunately the stemmer did not stem ‘an’ to ‘a’, thus (an a) do not form an

equal couple.

Table 5. Clusters for measuring instruments after 2 cycles

1. mass weight

2. conditions variations

3. swinging turning

4. direction inclination

5. accurate precise

6. distances heights

7. set specific

8. method system

9. field limits

10. frequency wavelength

11. hyperbolic radio radiofrequency
12. observing tracing
13. day sunlight
14. apparatus instrument telescope
15. amount concentration intensity percentage

proportion rate salinity strength

16. celestial heavenly
17. analyse ascertaining determining estimating

location measuring recording taking testing

However, before stoplist discrimination was introduced, the matched couples

(any an) and (any a) present a lcc ≥ 5, so that by our clustering algorithm they
should belong to the same cluster and then one can replace one with the other in

the strings. By running the program without stoplist discrimination, one can

observe two clusters related to function words:

Cluster 1: a an any the

Cluster 2: for that which

According to these premises, table 6 demonstrates clusters by first replacing all

the strings according to these clusters of function words. The italicised words

are the new words added to the list for the clustering algorithm presented on

table 5. Two out of the five new clusters (18 and 22) have far from similar

members, but curiously most of the words added to the existing clusters (14 and

17) are correctly used as equivalent words.

Table 6. Clusters after replacing clusters of function words

1. mass weight
2. conditions variations
3. swinging turning
4. direction inclination
5. accurate precise
6. distances heights
7. set specific
8. method system
9. field limits
10. frequency wavelength
11. hyperbolic radio radiofrequency

15. amount concentration intensity
percentage proportion rate salinity
strength

16. celestial heavenly
17. analyse ascertaining astronomical

counting detecting determining
estimating indicates location
making measuring provides
recording taking testing

18. photometric relative
19. displaying producing

12. observing tracing
13. day sunlight
14. apparatus device instrument

meter telescope

20. angle slope
21. photographic visual
22. reticle time

We can think of some other further manipulations the strings can undergo to

improve the retrieval of similar words. For example, reducing to a single word

form two or more abbreviations of a proper name (‘T.S. Eliot’) or of an

acronym (‘U.S.A.’). A major manipulation of strings that undoubtedly can

improve the retrieval of clusters is trying to normalise the syntactic elements of

the strings. Therefore, possessives can be transformed to noun phrases. For

example, ‘direction of the wind’ can be replaced by ‘wind direction’ or

‘carpenter’s square ‘ to ‘carpenter square’. Similarly, as suggested by Waterman

[1996], one can try to align the same part of speech categories after using a

tagger, so that bindings of different categories are rejected.

4 FUTURE WORK

We have developed an algorithm to cluster semantically words from definitions

based on the Levenshtein distance. However, the algorithm presented is

perfectible, and there is always the alternative of exploring new techniques to

improve it. Work on alignment techniques is growing. Just recently, for

example, the University of Leeds has started working on grammar correction

[van Zaanen 1999] and UMIST on machine translation [McTait and Trujillo

1999], based on alignment techniques.

The processes of alignment and determination of matched pairs are currently

carried out on raw definition text that has undergone little preprocessing. Future

work could lead to an improvement in alignment and in finding suitable

matched pairs in several ways:

• by preprocessing the definitions to deal with various punctuation phenomena,

particularly where abbreviations are concerned;

• by recognising and handling items such as scientific formula and other mathematical

or formal notations;

• by dealing sensibly with lexicographic devices where these are consistently used

(e.g. ‘see also’);

• by interpreting sensibly other formal lexicographic devices where these are

consistently used (bold face, small capitals, etc.);

• by working with a notion of sentence boundary, or definitional unit (this relates also

to the point concerned with punctuation) - this would require a greater measure of

linguistic analysis;

• by attempting to align units of the same part of speech or (more ambitiously) same

semantic class - this would require also a greater degree of linguistic analysis via part

of speech taggers, consultation of semantic dictionaries for NLP, etc.;

• by attempting to identify compound words and terms that could be aligned and

clustered as single units - the identification of compounds is one of the harder tasks

in NLP and little progress has been made towards high accuracy of identification,

also much human intervention is required to validate candidate compounds.

It might be thought that more work could be successfully carried out already on

processing definitions in order to handle e.g. lexicographic metalanguage or the

various abbreviations and notations used by lexicographers. However,

experience has shown that there is much inconsistency in the writing of

definitions by terminologists and lexicographers. Moreover, editing decisions

play a part in e.g. altering house style in order to render a word entry more

interpretable i.e. less, or indeed more, typographically complex. Thus, general

automatic analysis of dictionary definitions, where these have been culled from

publishers' machine readable dictionaries, is not at all straightforward, not even

for definitions taken from a single source, as inconsistency is a major problem.

However, with current moves towards the use of languages such as SGML and

the family of mark up languages based on it, it will become increasingly

possible to be able to reliably analyse and interpret definition text which is

already marked up to some degree. This is however not possible at present with

current dictionary resources, on the scale that would be necessary.

5 CONCLUSION

Gao [1997] states that the problem for statistical alignment algorithms, such as

those based on the facts described by Gale and Church [1991], is the low

frequency of words that occur in parallel corpora. Alignment algorithms based

on either edit distance or Levenshtein distance are not statistical by nature, so

that they do not require large amounts of data and can return clusters even when

alignment between words is very rare.

The clustering algorithm here proposed gives us reliable clusters using a

stemmer algorithm, stoplist discrimination, lcc ≥ 5 and no manipulation of the
strings. A better performance of the program would be achieved by using

equivalence of function words, and a tagger for part of speech recognition. The

former was demonstrated and lets us retrieve words that usually are not matched

as they do not have a high lcc value. The latter lets us exclude matching words

with different categories. This however requires further research.

REFERENCES

Adamson, G.W. and Boreham, J. 1974. "The use of an association measure

based on character structure to identify semantically related pairs of

words and document titles". Information Storage and Retrieval 10, 253-

260.

Agirre, E., and Rigau, G. 1996. “Word Sense Disambiguation using Conceptual

Density”. Proc. COLING-96. The 16th International Conference on

Computational Linguistics, Copenhagen, 16-22.

Arranz, M.V. 1997. "Lexical Bottleneck in Machine Translation and Natural

Language Processing: A Case Study". Aslib 97. London.

Chakravarthy, A.S. 1994. “Representing Information Need with Semantic

Relations”. Proc. COLING-94. The 15th International Conference on

Computational Linguistics, Kyoto, 737-741.

[CED2] 1994. Collins English dictionary. Glasgow: Harper Collins Publishers.

Gale, W.A. and Church, K.W. 1991. “A program for aligning sentences in

bilingual corpora”. Proc. of 29th Annual Conference of the ACL, 177-184.

Gao, Z.M. 1997. Automatic extraction of translation equivalents from a parallel

Chinese-English corpus. PhD Thesis, UMIST.

Gordon, A.D. 1981. Classification. Cambridge: University Press.

Grefenstette, G. 1996. “Evaluation Techniques for Automatic Semantic

Extraction: Comparing Syntactic and Window Based Approaches”.

Corpus Processing for Lexical Acquisition. B. Boguarev and J.

Pustejovsky (eds.). Cambridge: The MIT Press.

Habert, B., Naulleau, E., and Nazarenko, A. 1996. “Symbolic word clustering

for medium-size corpora”. Proc. COLING-96. The 16th International

Conference on Computational Linguistics, Copenhagen, 490-495.

Hirakawa, H., Xu, Z., and Haase, K. 1996. “Inherited Feature-based Similarity

Measure Based on Large Semantic Hierarchy and Large Text Corpus”.

Proc. COLING-96. The 16th International Conference on Computational

Linguistics. Copenhagen: Center for Sprogteknologi.

Jones, D. 1996. Analogical Natural Language Processing. London: UCL Press.

Levenshtein, V.I. 1966. “Binary codes capable of correcting deletions,

insertions, and reversals”. Cybernetics and Control Theory 10 (8), 707-

710.

McTait, K. and Trujillo, A. 1999. “A language-neutral sparse-data algorithm for

extracting translation patterns.” In Proc. Theoretical and Methodological

Issues in Machine Translation (TMI-99), Chester, 98-108.

Miller, G.A., Fellbaum, C., Kegl, J., and Miller, K. 1990. “The Princeton

Lexicon Project: A Report on WordNet”. In BudaLEX’88 Proceedings. T.

Magay and J. Zigány (eds.). 543-558.

Morris, J., and Hirst, G. 1991. “Lexical Cohesion Computed by Thesaural

Relations as an Indicator of the Structure of Text”. Computational

Linguistics 17(1), 21-48.

[OED2] 1994. Oxford English dictionary. Oxford: Oxford University Press and

Rotterdam: Software B.V.

Porter, M.F. 1980. “An algorithm for suffix stripping”. Program 14(3), 130-137.

Resnik, P. 1997. “Disambiguating noun groupings with respect to WordNet

senses”. Proceedings of the 3rd Workshop on Very Large Corpora, MIT.

Roget, P. 1987. Roget’s thesaurus of English words and phrases. Essex:

Longman.

van Zaanen, M. 1999. “GAS: generic alignment system”. Unpublished draft

paper. University of Leeds.

Wagner, R.A., and Fisher, M.J. 1974. “The String-to-String Correction

Problem”. Journal of the Association for Computing Machinery 21(1),

168-173.

Waterman, S.A. 1996. "Distinguished Usage". In Corpus Processing for Lexical

Acquisition. B. Boguraev and J. Pustejovsky (eds.) Cambridge: The MIT

Press.

Gerardo Sierra leads the research on Language Engineering at the Engineering Institute,

Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apdo.

Postal 70-472, México 04510, D.F., Mexico. He can be reached at

gsm@pumas.iingen.unam.mx.

John McNaught carries out research and teaching in Computational Linguistics at the

Department of Language Engineering, UMIST, PO Box 88, Manchester M60 1QD, UK.

He specialises in corpus linguistics, information extraction and computational

lexicography, and has a keen interest in standards for Language Engineering, being co-

Editor of the European Advisory Group for Language Engineering Standards. He can be

reached at John.McNaught@umist.ac.uk.

