
A Method for Making Computational Sense
of Situation Semantics

Gregers Koch

As a logic programming activity, we are studying certain computational linguistic
problems, in particular concerning the automation of data flow analysis synthe-
sizing a sort of data flow structures. This automated method may be utilized for
inductive purposes (in the sense of generalization from examples). The software
seems to apply conveniently for the automated constructionof 1) natural language
interfaces to knowledge based systems, 2) simple translation between human lan-
guages like English, Danish, and Japanese, 3) compilers of traditional program-
ming languages, and 4) translators between fragments of human languages and
logical formalisms. Here are discussed two problems concerning the handling of
Situation Semantics in a computational framework: 1) The problem of how to
translate automatically from text to situation schemata (or similar structures), 2)
The problem of how to perform automatically a reasonable interpretation of the
semantics of the situation schemata. Tentative solutions to both problems are out-
lined here. The present solutions are heavily concerned with the application of our
homemade methods for performing automated semantic induction. The proces was
divided into four mappings. As our meta programs performingthe automated syn-
thesis of the translation programs rely heavily on the underlying data flow analyses,
we may conclude that the method advocated here in a sense dictates the separation
into the four functionalities. Many technical details havebeen left out in this paper,
among them the treatment of grammatical tense. But with these reservations we
must maintain that we have outlined a simple way of implementing parsers for Sit-
uation Semantics, parsers to translate into situation schemata and parsers for partial
translation into reasonable logical interpretations.

1 AUTOMATED SEMANTIC INDUCTION

1.1 A System Performing Semantic Induction

As a logic programming activity, we are studying certain computational linguistic
problems, in particular concerning the automation of data flow analysis synthe-
sizing a sort of data flow structures. This automated method may be utilized for
inductive purposes (in the sense of generalization from examples). The method

here is called logico-semantic induction and it constitutes an efficient kind of auto-
mated program synthesis.

More precisely we are studying data flow structures and the construction and test-
ing of software for automatic implementation of the principles of logico-semantic
induction [Koch 1988, 1991, 1993]. The software seems to apply conveniently for
the automated construction of 1) natural language interfaces to knowledge based
systems, 2) simple translation between human languages like English, Danish, and
Japanese, 3) compilers of traditional programming languages, and 4) translators
between fragments of human languages and logical formalisms.

1.2 An Introduction to the System

When constructing natural language interfaces, one necessarily has to select a lin-
guistic fragment or a sublanguage to be used by the user in thecommunication or
interaction with the computational system [Abramson and Dahl 1989]. Precisely
which sublanguage or fragment should be selected, is an openquestion. Further-
more, which internal representation should be preferred from the point of view of
efficiency or practical convenience, is also an open question [Pereira 1987]. Hence
it may be a good idea to construct a frame system allowing flexible experimenta-
tion with language constructs and their possible representations. What is needed,
is a facility to help in the automated translation of the selected constructs into some
flexible and useful representations allowing further processing (e.g. for translation
into a database query language or into an implemented programming language).

Here we discuss such a flexible home-made frame system. It is functioning in an
inductive manner, since the system requires the user to specify a text or query com-
bined with the suggestion for an internal representation. In this case the system is
capable of working out the details of a translator system translating texts of a syn-
tactic form similar to the given text into the internal representation in use. In other
words, this is a method for inductive and automated program synthesis, sometimes
called logico-semantic induction. Such a system may also beused for obtaining
completely automatic implementations of parsers implementing semantic theories
like Discourse Representaion Theory and Situation Semantics.

For a beginning let us give a closer description of the mentioned method for induc-
tive and partly automated construction of programs for logical analysis of natural
language texts [Koch 1992]. In an earlier paper the same method was applied to a
scientific abstract [Koch 1997], and in a recent paper the same method was applied
to Discourse Representation Theory [Koch 1999].

We shall illustrate the method by dealing with an utterly simple example. Here we
shall analyse a tiny little sentence of four words

Peter seeks a mermaid

This sentence can trivially be described by means of the following syntax (a simple
context-free grammar):

S -> NP VP.
NP -> Prop | D N.
VP -> IV | TV NP.

The semantics in the form of a semantic parser, that is a program translating into
some semantic representation, may be given in the form of a definite clause gram-
mar (short DCG) like this

S(Z) --> NP(X,Y,Z), VP(X,Y).
NP(X,Y,Y) --> Prop(X).
NP(X,Z,W) --> D(X,Y,Z,W), N(X,Y).
VP(.....) --> TV(.....), NP(.....). (*)

with some lexical data

D(X,Y,Z,a(X,Y,Z)) --> [a].
TV(X,Y,seeks(X,Y)) --> [seeks].
N(X,mermaid(X)) --> [mermaid].
Prop(Peter) --> [Peter].

The last line (*) of the program was missing, it still needs tobe filled out.

If we write it this way

VP(X,W) --> TV(X,Y,Z), NP(Y,Z,W).

we obtain the extensional reading.

On the other hand, if we fill it out this way

VP(X,Z) --> TV(X,Y,Z), NP(_,_,Y).

we obtain an intensional reading, where the existence of a mermaid is not presup-
posed.

A central point of this analysis is the observation, that theconstruction of this
kind of parser programs can relatively easily be done automatically by another
program, sometimes called the meta parser. The central partof such a meta parser
may conveniently be a kind of dataflow analysis, but other possibilities are also
conceivable.

As an application, let us return to and continue with a closeranalysis of the exten-
sional reading of the small example sentence. In short, by interpreting a(X,Y,Z) in
different ways, we obtain a number of different semantic representations.

For example, interpreting it this waya(X;Y;Z) = 9X[Y&Z]
will give a predicate logic expression as the obtained semantic representation. On
the other hand, interpreting it this waya(X;Y;Z) = [[X]; Y&Z]
will lead to a representation in the style of Discourse Representation Theory [Kamp
and Reyle 1993].

In the remainder of the present paper, we shall elaborate on similar ideas with
respect to Situation Semantics.

1.3 Some Remarks on Situation Semantics

In Situation Semantics, the meaning of a simple declarativesentence' is a relation
between an utterance situation u and a described situation su[SIT:']s
whereSIT:' is a situation schema associated with'. Here u must be an appropri-
ate utterance situation with respect to the constraints induced bySIT:', sometimes
writtenu 2MF [SIT:'].
We shall make an attempt to spell out how a given u and a givenSIT:' constrain
or partially determine a described situation s. Here we assume the decomposition
of the utterance situation u in two parts, d for discourse situation and c for the

speaker’s connection.

A simple sentence', such as ”John kicked Pluto” or ”Pluto was kicked by John”
has a situation schema of approximately the following form

REL = r
ARG.1 = a
ARG.2 = b
LOC = -
POL = i

where r can be anchored to a relation, a and b to individuals, and i gives the polarity
of the fact. LOC is a function which anchors the described fact relative to the
discourse situation u = (d,c). We say that the partial function g anchors the locationSIT:':LOC in the discourse situation d,c if
g(lo) = ld
c(r),g(IND.�),ld;1
where ld is the discourse location and c(r) is the relation given by the speaker’s
connection c.

The situation schema corresponding to the sentences given here is now

REL = kick
ARG.1 = John
ARG.2 = Pluto

LOC =

IND = Y

COND =
REL = �
ARG.1 = Y
ARG.2 = lo

POL = 1

Much more about Situation Semantics may be found in e.g. [Barwise and Perry
1983], [Fenstad et al. 1987], [Devlin 1991], [Loukanova 1995], [Benthem and ter
Meulen 1997].

1.4 Translation and Interpretation

As far as we can see, the technical problems are most easily dealt with if the trans-
lation and interpretation are done in a somewhat roundaboutmanner:

Text
| \

trans2 | \ trans1
| \
V V
F2 F1
| |

in2 | | in1
| |
| V
| SIT.schema
| /
| / interpretation
| /
V V

Logical description

The obvious way would be an implementation ofin1�trans1 andinterpretation,
respectively. And it is certainly possible to implement interpretation directly, only
it would be slightly complicated, so instead we prefer to implement the following
four functionalities: trans1, in1, trans2, and in2.

As an example, let us look at the sentence'3 : every boy kicks Pluto.

Here we gettrans1('3) = kick(every(X; boy(X)); P luto)in1(trans1('3)) = SIT:'3 =
REL = kick

ARG.1 = John
ARG.2 = Pluto

LOC =

IND = Y

COND =
REL = o
ARG.1 = Y
ARG.2 = lo

POL = 1trans2('3) = every(X; boy(X); kick(X;P luto))

The fourth functionality in2 is here preferred specified by means of a textual char-
acterization of the logical relation that it designates:in2(trans2('3)) is the following logical description:d; c[SIT:'3]s
iff d; c 2MF [SIT:'3]
and there exists anchor g onSIT:'3:LOC
such that in s:

if h � g such that c(boy),h(X);1

then c(kick),h(X),c(Pluto);1

The interpretations may be realised by the following functionalities:

in2(W)(g) =

d,c[SIT.']s
iff d,c 2MF [SIT:']
and there exists anchor g on SIT:':LOC
such that in s: in2(W)(g)

in2(every(X,Y,Z))(g) = �h. if h � g such that in2(Y)(h)
then in2(Z)(h)

in2(a(X,Y,Z))(g) = Y(g) and Z(g)

in2(dog(X))(g) = c(dog),g(X);1

in2(kick(John,X))(g) = c(kick),c(John),g(X);1

Similarly,

in2(kick(X,Pluto))(g) = c(kick),g(X),c(Pluto);1

in2 interpretsnot(W) by changing the polarity of the interpretation of W (e.g.
from the value 1 to the value 0).

As another example,'4: John kicks a dog.

In this case the four funtionalities become:

trans1('4) = kick(John,a(X,dog(X)))

in1(trans1('4)) = SIT.'4 =

REL = kick
ARG.1 = John

ARG.2 =

IND = X
SPEC = A

COND =
REL = dog
ARG.1 = X
POL = 1

LOC =

IND = Y

COND =
REL = o
ARG.1 = Y
ARG.2 = lo

POL = 1

trans2('4) = a(X,dog(X),kick(John,X))

in2(trans2('4)) is the following logical description:

d,c[SIT.'4]
iff d,c 2MF [SIT:'4]
and there exists anchor g on SIT:'4:LOC
such that in s:

c(dog),g(X);1

c(kick),c(John),g(X);1.

2 CONCLUSIONS

Finally a few concluding remarks:

The proces was divided into four mappings. The four mappingsare easily realised
by means of semantic induction, described in the previous section. The reason why
we prefer to separate the two translations is this: The data flow naturally connected
to the first translation (trans1) is completely different from the data flow naturally
connected to the second translation (trans2). In short, thetwo underlying data
flows diverge. As our meta programs performing the automatedsynthesis of the
translation programs rely heavily on the underlying data flow analyses, we may
conclude that the method advocated here in a sense dictates the separation into the
four functionalities.

More could be said about the left side of the meaning relationto obtain a better
analysis of the flow of information in a discourse. Also many technical details
have been left out in this paper, among them the treatment of grammatical tense.
But with these reservations we must maintain that we have outlined a simple way
of implementing parsers for Situation Semantics, parsers to translate into situation
schemata and parsers for partial translation into reasonable logical interpretations.

REFERENCES

Kamp, H. and Reyle U.From Discourse to Logic. Kluwer, Amsterdam, 1993.

Koch, G. Montague’s PTQ as a Case of Advanced Text Comprehension, in Infor-
mation Modelling and Knowledge Bases IV, eds. H. Kangassalo et al. (IOS,
Amsterdam, 1993), 377-387.

H. Abramson and V. Dahl,Logic Grammar, (Springer, 1989).

C. G. Brown and G. Koch, eds.,Natural Language Understanding and Logic Pro-
gramming, III, (North-Holland, Amsterdam, 1991).

M.A. Covington,Natural Language Processing for Prolog Programmers, (Prentice
Hall, Englewood Cliffs, 1994).

P. Deransart and J. Maluszynski,A Grammatical View of Logic Programming,
(MIT Press, 1993).

H. Kamp, A theory of truth and semantic representation, 277-322, J.A.G. Groe-
nendijk, T.M.V. Janssen and M.B.J. Stokhof, eds.,Formal Methods in the
Study of Language, Mathematical Tract 135, Amsterdam, 1981.

G. Koch, Logics and informatics in an integrated approach tonatural language

database interfaces, 602-616, S. Ohsuga et al., eds.,Information Modelling
and Knowledge Bases III, (IOS, Amsterdam, 1992).

G. Koch, Linguistic data-flow structures, 293-308, in [Brown 1991].

F.C.N. Pereira and S.M. Shieber,Prolog and Natural-Language Analysis, (CSLI,
Stanford University, 1987).

G. Koch, Computational logico-semantic induction, inNatural Language Under-
standing and Logic Programming II, eds. V. Dahl and P. Saint-Dizier (North-
Holland, Amsterdam, 1988) 107-134.

G. Koch, Semantic analysis of a scientific abstract using a rigoristic approach, 361-
370, H. Kangassalo et al., eds.,Information Modelling and Knowledge Bases
VIII, IOS Press, Amsterdam, 1997.

G. Koch, Discourse representation theory and induction, 401-403, H.C Bunt &
E.G.C. Thijsse (eds.),Proceedings of the Third International Workshop on
Computational Semantics (IWCS-3), Tilburg University, 1999.

J. Barwise & J. Perry,Situations and Attitudes, MIT Press, 1983.

J.E. Fenstad et al.,Situations, Language and Logic, D. Reidel, 1987.

K. Devlin, Logic and Information, Cambridge Univ. Press, 1991.

R. Loukanova, Solving natural language ambiguities in situation semantics,Bits
and Bytes, Institute for Language and Communication, Odense University,
1996.

J. van Benthem & A. ter Meulen (eds.),Handbook og Logic and Language, North-
Holland, 1997.

Gregers Koch is a professor of computer science and computational linguistics at the De-
partment of Computer Science (DIKU) at Copenhagen University, Universitetsparken 1,
DK 2100 Copenhagen, Denmark. He has written about 80 publications. He can be reached
by email: gregers@diku.dk or Fax: (+45)35321401.

