
Some Perspectives on Induction in Discourse
Representation

Gregers Koch

Here are discussed some perspectives on induction in language processing, mainly
natural language analysis. In particular, we discuss some perspectives concerning
the application of our system for performing a special kind of inductive inference
sometimes called logico-semantic induction. This system can be seen as a meta
system producing automatically logical parsers (in the form of application-specific
definite clause grammars) to perform translations.

1 LOGICAL INDUCTION

1.1 Introduction to a System Performing Logical Induction

In this section we present an application of our system for a kind of logical induc-
tion [Koch 1988, 1991]. It deals with the automated generation of logical parsers
or translators.

A logical parser is a logical formula describing a translation process into some
logical notation. More precisely, we add the requirement tothe meta system that
the logical description is capable of producing by deduction a feasible description
of the translation process. The translation takes place from a specified language
fragment L, typically from a fragment of a natural language like English or French,
but a programming language like Pascal may also be used. The target language of
the translation is an appropriately chosen logic Log1.

As to the logical host language, the meta level translation takes place in one logical
language Log2, and the object level translation takes placein a possibly different
logical language Log3. Here we shall confine ourselves to discussion of the situa-
tion where both logical host languages coincide with the Horn Clause Logic HCL.
Other possibilities for Log2 and Log3 can certainly also be dealt with, but here we
confine ourselves to Log2 = Log3 = HCL.

As target logic Log1 our system can accomodate virtually anypossible logic, and
this flexibility seems to be one of the really strong featuresof this approach. In that
particular sense we may consider it a system with high semantic generality. As an
illustration we can exemplify with a variant of Montague’s intensional logic ([Koch



1993]) or with a sort of situation schemata like Jens-Erik Fenstad et al. [Fenstad et
al. 1987].

1.2 The System

Our meta program translates in seven steps for obtaining a so-called ”logico-semantic
induction” [Koch 1988, 1991]. In this section I shall describe the method by means
of an example. For the matter of convenience, I shall select atiny example (this
should not be taken as an indication however, that only toy cases can be handled
by this kind of systems).

The method presupposes that a context-free grammar has beencreated, including a
lexicon, and it performs semantic induction for a pair of text and semantic structure.
The result of the induction is a definite clause grammar (DCG)corresponding to the
grammar and it will be annotated with variables. Our exampleuses the following
little grammar

s -> np vp
np -> det n
vp -> v np

The sample text is

"a horse eats an apple"

and the intended semantic structure is

a(x, horse(x), a(y, apple(y), eats(x,y)))

representing the predicate-logic formula9x[horse(x) ^ 9y[apple(y) ^ eats(x; y)]]
First step: Reformulate the intended semantic structure into a functional tree

structure where each functor has a label or a number attached.

Second step: Create a syntax tree through parsing of the sample text in accor-
dance with the grammar.

Third step: Label the terminals of the syntax tree with the same labels ornum-
bers as under step one in such a way that each functor in step one constitutes



an element from the category of the syntax tree carrying the corresponding
label. More precisely, make a connection from a numbered functor in the
result structure to the lexical category in the syntax structure to which the
word (lexical or syncategorimatic) belongs.

Fourth step: Here we want to create one referential index (sometimes called a
focus variable), for each noun phrase, and we shall construct a flow between
the focus variable and certain other constituents. The referential indices cor-
respond to those variables (here x and y) being part of the semantic structure.

The aim is to obtain that during parsing the resulting DCG must create a
variable (a referential index) as an identifier for one of thesemantic objects
occuring in the semantic structure (here horse, apple etc.).

Fifth step: Here the lexical flow is constructed as a flow connecting each textual
word with an element of the semantic structure. In the example a lexical flow
connects the word ”horse” with the arguments of the noun category.

Sixth step: Each edge in the semantic structure of step one can be designated by
the labels of the two ends of the edge. Connect the nodes with the same
labels in the syntax tree through a flow following the edges ofthe syntax
tree.

Seventh step: In this step we control that the arity is the same for each occurrence
of a functor and we control the consistency of the local flow. This means
that each nonterminal function symbol has the same number ofarguments
in every occurrence, and these arguments are connected to the surrounding
nodes in the same way for every occurrence of the same syntax rule.

In our example the method will give us the following DCG:

s(A) --> np(B,C,A),vp(B,C).
np(D,E,F) --> det(D,G,E,F), n(D,G).
vp(H,I) --> v(H,J,K), np(J,K,I).

2 SOME PERSPECTIVES ON SEMANTIC THEORIES

3 Some perspectives on semantic theories

3.1 Field Grammars

Field grammars as invented by Paul Diderichsen ([Diderichsen 1947]) may get a
sort of semantic component in the form of some so-called data-flow structures that



are also rather central concepts in logico-semantic induction. Furthermore, in an
automated fashion logico-semantic induction can be used toprovide Diderichsen’s
field grammars with a translator from natural language (in this case a fraction of
Danish or some other Nordic languages) into some logical notation. Of course, this
requires a decision as to precisely which logical notation to utilize.

3.2 Montagovian Intensional Logic

Montague’s PTQ may at least partially be implemented automatically by means of
logico-semantic induction ([Koch 1993]). The fact that such an implementation is
created in a totally mechanical fashion could be interpreted as an indication of a
kind of canonical character of PTQ, a character that is very difficult indeed to grasp
when reading the forbiddingly incomprehensible paper.

3.3 Discourse Representation Theory

Apparently the essential parts of Hans Kamp’s so-called Discourse Representa-
tion Theory ([Kamp 1981], [Kamp and Reyle 1993]) (DRT) may beimplemented
by means of logico-semantic induction. An exception is the precise handling of
anaphora.

3.4 Situation Semantics

It seems to be true that at least parts of situation semantics, as described in the
book by Jens-Erik Fenstad ([Fenstad et al. 1987]) may be implemented without
any programming effort by means of logico-semantic induction [Koch 2000].

It would hardly be worthwhile to utilize the original text byBarwise and Perry
[1993], because that book seems to describe a development ofideas rather than a
single system, and so contradictions show up in several places.

3.5 McCord’s System

McCord’s chapter 5 in the 1990 book written by IBM staff members ([Walker
1990]) describes a rather comprehensive system for the analysis of simple English
for database queries. It could be interesting to see precisely how big a fraction of
his system might be implemented in an automated fashion and without any real
programming effort by means of logico-semantic induction.At this institute, it
would be possible to compare with a hand-made implementation of McCord’s sys-
tem [Christiansen 1993].



3.6 Cognitive Grammar

I share the point of view that it is possible to utilize the logico-semantic induction
principles for the implementation of some of the ideas in cognitive grammars, as
described by Ronald Langacker.

Inger Lytje at Aalborg University Centre has been working ona kind of handmade
implementation of aspects of cognitive grammar, so the taskhere might deal with
the reimplementation of parts of her system.

It is possible that these ideas seem to be rather alien to cognitive semantics or at
least to the proponents of cognitive grammar, but nonetheless the methods dis-
cussed here seem to apply for the partial implementation of this type of systems.

4 SOME PERSPECTIVES ON TEXTUAL ANALYSIS

4.1 Natural Language Interfaces to Data Bases and Knowledge Based
Systems

The distinction between data bases and knowledge based systems appears to be
rather vague. In any case, apparently it is rather easy to provide that kind of systems
with a simple natural language interface by means of logico-semantic induction.
This sort of application may well be considered the prototypical way of applying
logico-semantic induction.

4.2 Machine Translation

It may well be relevant to distinguish between two differentcases. In one case,
where the two languages are rather closely related (like forinstance two Nordic
languages or translation from English into Danish or vice versa) it may seem rather
clumsy and cumbersome to use a logical notation as an intermediate representation.
Whereas in the other case, where the two human languages are not very much re-
lated (like for instance when translating from Japanese into English or vice versa),
it may be more appropriate to think of the use of a logical notation as an interme-
diate representation between the two languages.



5 SOME PERSPECTIVES ON PROGRAMMING LANGUAGES

5.1 Compiler Construction

The logic Log1 may be a logical representation of machine code, and the language
may be a programming language. In that case we have a compilercompiler, that
is, an automatic mechanism for the construction of compilers.

As opposed to possibly all other compiler compilers this oneis functioning from
examples of the intended compilation.

This application has an interesting perspective: when designing the original mech-
anism for logico-semantic induction, concepts from compilation techniques were
absolutely central, in particular Don Knuth’s ideas about dependency graphs [Knuth
1968]. So it was all a matter of applying concepts from the computer science dis-
cipline of compiling techniques in the context of problems from computational lin-
guistics. The new requirements to the methods of technical solutions have probably
influenced and changed and sharpened the ideas. And so it is quite interesting, after
the ripening of the topic and of the methods, to reapply the methods in the original
setting of compiler techniques. It is possible that the methods described here rep-
resent certain steps forward compared to the traditional methods. For instance, the
focusing on the example based approach may possibly be unique.

5.2 Program Synthesis

We have continued to claim that the input should be a languagefragment, and the
output should be a logic. Here we may question that claim. After all, what is a
language, and what is a logic?

It seems to be possible to apply a logico-semantic inductionsystem on whatever
problem from computer science where the task is to constructa program or a com-
putational system to perform a kind of data transformation.

The unique aspect in this method is the indirect controllingof the automated pro-
gram construction process, by specification of examples of intended data trans-
formation. Besides a syntactic description of permitted input strings is required,
and also a description of output as a logic or at least as a (formalism or) formal
notational system. It is possible that professor Naur’s comments on proof versus
formalization ([Naur 1994]) are of some relevance here, though I tend to think that
here we deal with formalisms or formal notations rather thana process of formal-
ization.

From the point of view of the programmer the approach here seems to be a method
of program synthesis with the characteristics of being rather indirect. The pro-



grammer will obtain new products by inventing still better and more appropriate
samples of textual input and corresponding output.

We have to admit that we are not particularly skilled in the immediate handling of
such a mechanism. But everything new takes learning.

The programmer will probably experience his own role more like a control function
in relation to the logico-semantic induction system which when allowed, tends to
produce one program after another. He may also experience his role as a kind
of pedagogical task where he is supposed to help the computerto construct some
useful programs, and he can do that by starting with some simple examples and
then gradually make the examples more and more complex and refined.

By and large, this seems to me to be a good and possibly ideal sharing of cooper-
ative work between a human being and a machine, where the man is in charge of
all the ideas, the initiative, and all of the control, whereas the machine is supposed
to fill in exactly what it is skilled at, efficient and complicated symbolic manipula-
tions.

5.3 Natural Language Programming

This system may also be applied for a kind of natural languageprogramming, that
is, programming in natural language.

We have to admit that such terminology has been used before, or perhaps even
abused in the realm of computer science. As far as I remember,the Cobol Language
was promoted originally as a system that translates naturallanguage into code.
Today there would probably be widespread agreement that it was abuse of the
words (or perhaps we might talk about ”massive over-selling”).

Such abuse or over-selling should not prevent us from promoting similar ideas once
again, in particular in the convinction that this time the phrase is appropriate.

5.4 Implementation Issues

The first implementations relied heavily on the concept of data flow structures and
on the recipy of logico-semantic induction mentioned in thefirst section of this
paper.

Some later implementations elaborated on a variant of logico-semantic induction
which applied unification to a higher degree. One of these implementations, worked
out by students of computer science, resulted in a rather elegant, small Prolog pro-
gram, no more than 5 pages in length.

An interesting aspect of the implementation of logico-semantic induction is the



problem of self-applicability. It may comprise attempts todivide the process of
logico-semantic induction into minor subprocesses in sucha way that the individ-
ual subprocesses may be constructed independently by application of one of the
existing systems for logico-semantic induction. Such an implementation may ob-
tain the flavor of a sort of bootstrapping process where the hand coded parts will
successively be eliminated and replaced by machine generated modules. We are
still in the process of working on it.

REFERENCES

J. Barwise & J. Perry,Situations and Attitudes, Bradford Books, Cambridge, Mass.,
1983.

C.G. Brown & G. Koch (eds.),Natural Language Understanding and Logic Pro-
gramming III, North-Holland, Amsterdam, 1991.

T.B.A. Christiansen, master thesis, 1993.

P. Diderichsen,Elementary Danish Grammar (in Danish), 1947.

J.-E. Fenstad et al.,Situations, Language and Logic, D. Reidel Publishing Com-
pany, Dordrecht, Holland, 1987.

H. Kamp, A theory of truth and semantic representation, inFormal Methods in the
Study of Language, eds. J.A.G. Groenendijk et al., Math. Centre, Amster-
dam, 1981.

H. Kamp & U. Reyle,From Discourse to Logic, Kluwer Academic Publishers,
Dordrecht, Holland, 1993.

D.E. Knuth, Semantics of Context-free Languages,Math. Systems Theory 2(2),
127-145, 1968. Corrections inMath. Systems Theory 5(1), 95-96, 1971.

G. Koch, Computational logico-semantic induction, inNatural Language Under-
standing and Logic Programming II, 107-134, eds. V. Dahl and P. Saint-
Dizier, North-Holland, Amsterdam, 1988.

G. Koch, Linguistic data flow structures, inNatural Language Understanding and
Logic Programming III, 293-308, eds. C.G. Brown and G. Koch, North-
Holland, Amsterdam, 1991.

G. Koch, Montague’s PTQ as a Case of Advanced Text Comprehension, in Infor-
mation Modelling and Knowledge Bases IV, 377-387, eds. H. Kangassalo et
al., IOS, Amsterdam, 1993.

G. Koch, A method for making computational sense of Situation Semantics, CI-



CLING 2000, Mexico, 2000.

M. McCord, Natural Language Processing in Prolog, chapter 5in A. Walker(ed.)
1990.

P. Naur, article in BIT 34 (1994) 148-164.

R.H. Thomason,Formal Philosophy: Selected Papers of Richard Montague Yale
University Press, London, 1974.

A. Walker(ed.),Knowledge Systems and Prolog, Addison-Wesley Publishing Com-
pany, 1990.

Gregers Koch is a professor of computer science and computational linguistics
at the Department of Computer Science (DIKU) at Copenhagen University, Uni-
versitetsparken 1, DK 2100 Copenhagen, Denmark. He has published around 80
papers. He can be reached by email: gregers@diku.dk or Fax: (+45)35321401.

APPENDIX

/* grammar */
startsymbol(t).
t ---> [s].
t ---> [s,point,s].
s ---> [np,vp].
s ---> [if,s,comma,s].
np ---> [prop].
np ---> [pron].
np ---> [d,n].
vp ---> [tv,np].

/* terminals */
terminal(pron,he,[he]).
terminal(pron,it,[it]).
terminal(prop,smith,[smith]).
terminal(prop,jones,[jones]).
terminal(prop,semantics,[semantics]).
terminal(prop,philosophy,[philosophy]).
terminal(if,if,[A,B,e(d(A),d(B))]).
terminal(point,point,[A,B,f(A,B)]).
terminal(comma,comma,[]).
terminal(tv,teaches,[A,B,teaches(A,B)]).



terminal(tv,owns,[A,B,owns(A,B)]).
terminal(tv,uses,[A,B,uses(A,B)]).
terminal(n,book,[A,book(A)]).
terminal(d,a,[A,B,C,g(d(A),B,C)]).

/* input */
"jones teaches philosophy point
if he owns a book comma he uses it".
result(f(teaches(jones,philosophy),
e(d(g(d(x),book(x),owns(he,x))),d(uses(he,it))))).

/* Program synthesized */
pron(G)-->[Leksem],{terminal(pron,Leksem,[G])}.
np(G)-->pron(G).
tv(F,G,E)-->[Leksem],{terminal(tv,Leksem,[F,G,E])}.
vp(F,E)-->tv(F,G,E),np(G).
pron(F)-->[Leksem],{terminal(pron,Leksem,[F])}.
np(F)-->pron(F).
s(E,F)-->np(F),vp(F,E).
comma-->[Leksem],{terminal(comma,Leksem,[])}.
n(H,J)-->[Leksem],{terminal(n,Leksem,[H,J])}.
d(H,J,I,D)-->[Leksem],{terminal(d,Leksem,[H,J,I,D])}.
np(H,I,D)-->d(H,J,I,D),n(H,J).
tv(F,H,I)-->[Leksem],{terminal(tv,Leksem,[F,H,I])}.
vp(D,F)-->tv(F,H,I),np(H,I,D).
pron(F)-->[Leksem],{terminal(pron,Leksem,[F])}.
np(F)-->pron(F).
s(D,F)-->np(F),vp(D,F).
if(D,E,C)-->[Leksem],{terminal(if,Leksem,[D,E,C])}.
s(C)-->if(D,E,C),s(D,F),comma,s(E,F).
point(B,C,A)-->[Leksem],{terminal(point,Leksem,[B,C,A])}.
prop(L)-->[Leksem],{terminal(prop,Leksem,[L])}.
np(L)-->prop(L).
tv(K,L,B)-->[Leksem],{terminal(tv,Leksem,[K,L,B])}.
vp(K,B)-->tv(K,L,B),np(L).
prop(K)-->[Leksem],{terminal(prop,Leksem,[K])}.
np(K)-->prop(K).
s(B)-->np(K),vp(K,B).
t(A)-->s(B),point(B,C,A),s(C).


