Some Per spectives on Induction in Discour se
Representation

Gregers Koch

Here are discussed some perspectives on induction in lgaguracessing, mainly
natural language analysis. In particular, we discuss s@rsppctives concerning
the application of our system for performing a special kifichductive inference
sometimes called logico-semantic induction. This systam lie seen as a meta
system producing automatically logical parsers (in thenfof application-specific
definite clause grammars) to perform translations.

1 LOGICAL INDUCTION

1.1 Introduction to a System Performing Logical Induction

In this section we present an application of our system fand &f logical induc-
tion [Koch 1988, 1991]. It deals with the automated generatif logical parsers
or translators.

A logical parser is a logical formula describing a translatprocess into some
logical notation. More precisely, we add the requiremerthe®ometa system that
the logical description is capable of producing by deductideasible description
of the translation process. The translation takes plage ficspecified language
fragment L, typically from a fragment of a natural language English or French,
but a programming language like Pascal may also be used.afget tanguage of
the translation is an appropriately chosen logic Log1.

As to the logical host language, the meta level translatikeg place in one logical
language Log2, and the object level translation takes ptaegpossibly different
logical language Log3. Here we shall confine ourselves ttudision of the situa-
tion where both logical host languages coincide with therHolause Logic HCL.
Other possibilities for Log2 and Log3 can certainly also baltiwith, but here we
confine ourselves to Log2 = Log3 = HCL.

As target logic Logl our system can accomodate virtually gossible logic, and
this flexibility seems to be one of the really strong featuthis approach. In that
particular sense we may consider it a system with high seogenerality. As an
illustration we can exemplify with a variant of Montaguaénsional logic ([Koch

1993]) or with a sort of situation schemata like Jens-Erikdtad et al. [Fenstad et
al. 1987].

1.2 The System

Our meta program translates in seven steps for obtainingalkml "logico-semantic
induction” [Koch 1988, 1991]. In this section | shall deferithe method by means
of an example. For the matter of convenience, | shall selgictyaexample (this
should not be taken as an indication however, that only tegsaan be handled
by this kind of systems).

The method presupposes that a context-free grammar hastezged, including a
lexicon, and it performs semantic induction for a pair ot gaxd semantic structure.
The result of the induction is a definite clause grammar (D&&esponding to the
grammar and it will be annotated with variables. Our exanygsles the following
little grammar

S ->np vp
np -> det n
vp -> Vv np

The sample text is
"a horse eats an apple”

and the intended semantic structure is

a(x, horse(x), a(y, apple(y), eats(x,y)))

representing the predicate-logic formula
Jz[horse(z) A Jy[apple(y) A eats(z,y)]]

First step: Reformulate the intended semantic structure into a funatidgree
structure where each functor has a label or a number attached

Second step: Create a syntax tree through parsing of the sample text ioracc
dance with the grammar.

Third step: Label the terminals of the syntax tree with the same labelsuar-
bers as under step one in such a way that each functor in stepoostitutes

an element from the category of the syntax tree carrying ¢ieesponding
label. More precisely, make a connection from a hnumberedtéurin the
result structure to the lexical category in the syntax stmgcto which the
word (lexical or syncategorimatic) belongs.

Fourth step: Here we want to create one referential index (sometimesdall
focus variable), for each noun phrase, and we shall consirilow between
the focus variable and certain other constituents. Theaef@l indices cor-
respond to those variables (here x and y) being part of thaisgéorstructure.

The aim is to obtain that during parsing the resulting DCG thtusate a
variable (a referential index) as an identifier for one ofskeantic objects
occuring in the semantic structure (here horse, apple etc.)

Fifth step: Here the lexical flow is constructed as a flow connecting eaextual
word with an element of the semantic structure. In the exarapéxical flow
connects the word "horse” with the arguments of the noungcaye

Sixth step: Each edge in the semantic structure of step one can be designa
the labels of the two ends of the edge. Connect the nodes hgtlsame
labels in the syntax tree through a flow following the edgeshefsyntax
tree.

Seventh step: In this step we control that the arity is the same for eachiweonge
of a functor and we control the consistency of the local floinisTmeans
that each nonterminal function symbol has the same numbargoiments
in every occurrence, and these arguments are connected soitfounding
nodes in the same way for every occurrence of the same syultax r

In our example the method will give us the following DCG:
s(A) -->np(B,C A,vp(B 0.

np(D, E, F) --> det(D,GE F), n(D Q.
vp(H 1) --> v(H J,K), np(J, K 1).

2 SOME PERSPECTIVES ON SEMANTIC THEORIES

3 Some per spectives on semantic theories

3.1 Fidd Grammars

Field grammars as invented by Paul Diderichsen ([Dideenht947]) may get a
sort of semantic component in the form of some so-called-fiatastructures that

are also rather central concepts in logico-semantic inolict-urthermore, in an
automated fashion logico-semantic induction can be usptbiade Diderichsen’s
field grammars with a translator from natural language (ia tiase a fraction of
Danish or some other Nordic languages) into some logicaltioot. Of course, this
requires a decision as to precisely which logical notatiutilize.

3.2 Montagovian Intensional Logic

Montague’s PTQ may at least partially be implemented autically by means of
logico-semantic induction ([Koch 1993]). The fact thatlsam implementation is
created in a totally mechanical fashion could be interprete an indication of a
kind of canonical character of PTQ, a character that is viffigult indeed to grasp
when reading the forbiddingly incomprehensible paper.

3.3 Discourse Representation Theory

Apparently the essential parts of Hans Kamp’s so-calledd@isse Representa-
tion Theory ([Kamp 1981], [Kamp and Reyle 1993]) (DRT) mayilmgplemented

by means of logico-semantic induction. An exception is thecigse handling of

anaphora.

3.4 Stuation Semantics

It seems to be true that at least parts of situation semaraicslescribed in the
book by Jens-Erik Fenstad ([Fenstad et al. 1987]) may beeim@hted without
any programming effort by means of logico-semantic inaucf{iKoch 2000].

It would hardly be worthwhile to utilize the original text yarwise and Perry
[1993], because that book seems to describe a developmatdasf rather than a
single system, and so contradictions show up in severat¢gplac

3.5 McCord's System

McCord’s chapter 5 in the 1990 book written by IBM staff memso@Walker
1990]) describes a rather comprehensive system for thgsamalf simple English
for database queries. It could be interesting to see ptgdisev big a fraction of
his system might be implemented in an automated fashion atduwt any real
programming effort by means of logico-semantic inductigit this institute, it
would be possible to compare with a hand-made implementafidcCord’s sys-
tem [Christiansen 1993].

3.6 Cognitive Grammar

| share the point of view that it is possible to utilize theitmgsemantic induction
principles for the implementation of some of the ideas innitbhge grammars, as
described by Ronald Langacker.

Inger Lytje at Aalborg University Centre has been workingadtind of handmade
implementation of aspects of cognitive grammar, so the l@s& might deal with
the reimplementation of parts of her system.

It is possible that these ideas seem to be rather alien tata@ysemantics or at
least to the proponents of cognitive grammar, but nonetbeilee methods dis-
cussed here seem to apply for the partial implementatiohigtype of systems.

4 SOME PERSPECTIVES ON TEXTUAL ANALYSIS

4.1 Natural Language Interfaces to Data Bases and Knowledge Based
Systems

The distinction between data bases and knowledge baseshsystppears to be
rather vague. In any case, apparently it is rather easy tadathat kind of systems
with a simple natural language interface by means of log@mmantic induction.
This sort of application may well be considered the protimgioway of applying
logico-semantic induction.

4.2 Machine Trandlation

It may well be relevant to distinguish between two differeates. In one case,
where the two languages are rather closely related (likenkiance two Nordic
languages or translation from English into Danish or vicsagit may seem rather
clumsy and cumbersome to use a logical notation as an intkateaepresentation.
Whereas in the other case, where the two human languagestarerm much re-
lated (like for instance when translating from JapaneseHmiglish or vice versa),
it may be more appropriate to think of the use of a logical thmtaas an interme-
diate representation between the two languages.

5 SOME PERSPECTIVES ON PROGRAMMING LANGUAGES

5.1 Compiler Construction

The logic Logl may be a logical representation of machinecadd the language
may be a programming language. In that case we have a corpilgpiler, that
is, an automatic mechanism for the construction of conmiler

As opposed to possibly all other compiler compilers this isniinctioning from
examples of the intended compilation.

This application has an interesting perspective: whergdesy the original mech-
anism for logico-semantic induction, concepts from coath techniques were
absolutely central, in particular Don Knuth's ideas abapehdency graphs [Knuth
1968]. So it was all a matter of applying concepts from the poter science dis-
cipline of compiling techniques in the context of problemmii computational lin-
guistics. The new requirements to the methods of technitalisns have probably
influenced and changed and sharpened the ideas. And soitigs$rdaresting, after
the ripening of the topic and of the methods, to reapply ththows in the original
setting of compiler techniques. It is possible that the mdshdescribed here rep-
resent certain steps forward compared to the traditiongth@as. For instance, the
focusing on the example based approach may possibly beainiqu

5.2 Program Synthesis

We have continued to claim that the input should be a langfragenent, and the
output should be a logic. Here we may question that claimerAdtl, what is a
language, and what is a logic?

It seems to be possible to apply a logico-semantic inductimtem on whatever
problem from computer science where the task is to constrpobgram or a com-
putational system to perform a kind of data transformation.

The unique aspect in this method is the indirect controlbhthe automated pro-
gram construction process, by specification of examplestehiled data trans-
formation. Besides a syntactic description of permittgalitrstrings is required,
and also a description of output as a logic or at least as enéfiiem or) formal
notational system. It is possible that professor Naur's roemis on proof versus
formalization ([Naur 1994]) are of some relevance hereygid tend to think that
here we deal with formalisms or formal notations rather thgmocess of formal-
ization.

From the point of view of the programmer the approach hemnsé¢e be a method
of program synthesis with the characteristics of beingeaathdirect. The pro-

grammer will obtain new products by inventing still bettexdamore appropriate
samples of textual input and corresponding output.

We have to admit that we are not particularly skilled in thenediate handling of
such a mechanism. But everything new takes learning.

The programmer will probably experience his own role madee & control function
in relation to the logico-semantic induction system whidhew allowed, tends to
produce one program after another. He may also experiesceole as a kind
of pedagogical task where he is supposed to help the comjoutenstruct some
useful programs, and he can do that by starting with somelsieyamples and
then gradually make the examples more and more complex findde

By and large, this seems to me to be a good and possibly ideahgtof cooper-
ative work between a human being and a machine, where thesmarcharge of
all the ideas, the initiative, and all of the control, whex&@ae machine is supposed
to fill in exactly what it is skilled at, efficient and complieal symbolic manipula-
tions.

5.3 Natural Language Programming

This system may also be applied for a kind of natural langymggramming, that
is, programming in natural language.

We have to admit that such terminology has been used befonggrbaps even
abused in the realm of computer science. As far as | remeithige€,0bol Language
was promoted originally as a system that translates nakamguage into code.
Today there would probably be widespread agreement thaast abuse of the
words (or perhaps we might talk about "massive over-séelling

Such abuse or over-selling should not prevent us from prioignstmilar ideas once
again, in particular in the convinction that this time thegse is appropriate.

5.4 Implementation Issues

The first implementations relied heavily on the concept ¢ dlaw structures and
on the recipy of logico-semantic induction mentioned in tingt section of this
paper.

Some later implementations elaborated on a variant of teg&mnantic induction
which applied unification to a higher degree. One of thesdadmpntations, worked
out by students of computer science, resulted in a rathgaetesmall Prolog pro-
gram, no more than 5 pages in length.

An interesting aspect of the implementation of logico-seticainduction is the

problem of self-applicability. It may comprise attemptsdivide the process of
logico-semantic induction into minor subprocesses in sualay that the individ-
ual subprocesses may be constructed independently bycatimti of one of the
existing systems for logico-semantic induction. Such aplémentation may ob-
tain the flavor of a sort of bootstrapping process where timel ltaded parts will
successively be eliminated and replaced by machine gedenabdules. We are
still in the process of working on it.

REFERENCES

J. Barwise & J. Pern8ituations and Attitudes, Bradford Books, Cambridge, Mass.,
1983.

C.G. Brown & G. Koch (eds.)Natural Language Understanding and Logic Pro-
gramming |11, North-Holland, Amsterdam, 1991.

T.B.A. Christiansen, master thesis, 1993.
P. DiderichsenElementary Danish Grammar (in Danish), 1947.

J.-E. Fenstad et alStuations, Language and Logic, D. Reidel Publishing Com-
pany, Dordrecht, Holland, 1987.

H. Kamp, A theory of truth and semantic representatiorkoinmal Methods in the
Sudy of Language, eds. J.A.G. Groenendijk et al., Math. Centre, Amster-
dam, 1981.

H. Kamp & U. Reyle,From Discourse to Logic, Kluwer Academic Publishers,
Dordrecht, Holland, 1993.

D.E. Knuth, Semantics of Context-free Languagdsth. Systems Theory 2(2),
127-145, 1968. Corrections Math. Systems Theory 5(1), 95-96, 1971.

G. Koch, Computational logico-semantic induction,Natural Language Under-
standing and Logic Programming Il, 107-134, eds. V. Dahl and P. Saint-
Dizier, North-Holland, Amsterdam, 1988.

G. Koch, Linguistic data flow structures, Natural Language Understanding and
Logic Programming 1ll, 293-308, eds. C.G. Brown and G. Koch, North-
Holland, Amsterdam, 1991.

G. Koch, Montague’s PTQ as a Case of Advanced Text Compreirens Infor-
mation Modelling and Knowledge Bases 1V, 377-387, eds. H. Kangassalo et
al., I0S, Amsterdam, 1993.

G. Koch, A method for making computational sense of Sittm@mantics, Cl-

CLING 2000, Mexico, 2000.

M. McCord, Natural Language Processing in Prolog, chapier& Walker(ed.)
1990.

P. Naur, article in BIT 34 (1994) 148-164.

R.H. ThomasonFormal Philosophy: Selected Papers of Richard Montague Yale
University Press, London, 1974.

A. Walker(ed.) Knowledge Systems and Prolog, Addison-Wesley Publishing Com-
pany, 1990.

Gregers Koch is a professor of computer science and computational l&tigsi

at the Department of Computer Science (DIKU) at Copenhagametsity, Uni-

versitetsparken 1, DK 2100 Copenhagen, Denmark. He hasspatllaround 80
papers. He can be reached by email: gregers@diku.dk or 4%)35321401.

APPENDIX

/[* grammar */
startsynbol (t).

t --->1[s].

t --->[s,point,s].

S --->[np,vp].

s --->[if,s,comm, s].
np ---> [prop].

np ---> [pron].

np --->[d,n].

vp ---> [tv, np].

/* termnals */

term nal (pron, he,[he]).

termnal (pron,it,[it]).

term nal (prop,smth,[smith]).

term nal (prop,jones,[jones]).

term nal (prop, semantics, [senmantics]).
term nal (prop, phil osophy, [phi | osophy]).
termnal (if,if,[A B e(d(A),d(B))]).
term nal (point,point,[A B f(A B)]).
term nal (conma, comma, []).

termnal (tv, teaches, [A B,teaches(A B)]).

term nal (tv, owns, [A B, owns(A B)]
term nal (tv, uses,[A B, uses(A B)]
term nal (n, book, [A book(A)]).

termnal (d,a, [A B Cg(d(A),B O]).

).
).

/[* input */
"jones teaches phil osophy poi nt
if he owns a book comma he uses it".
resul t (f(teaches(jones, phil osophy),
e(d(g(d(x), book(x),owns(he,x))),d(uses(he,it))))).

/* Program synt hesi zed */

pron(Q -->[Leksem, {term nal (pron, Leksem[{)}.
np(Q -->pron(Q.

tv(F, G E)-->[Leksem, {term nal (tv, Leksem[F, G E])}.
vp(F, E)-->tv(F, G E),np(Q.

pron(F)-->[Leksem ,{term nal (pron, Leksem[F])}.
np(F)-->pron(F).

s(E, F)-->np(F),vp(F, E).

comma- - >[Lekseny, {term nal (comma, Leksem []
n(H J)-->[Leksen], {terninal (n, Leksem[H, J]
d(H, J,1,D)-->Leksenm, {term nal (d, Leksem [
np(H 1,D)-->d(H,J,I,D),n(HJ).
tv(F,H1)-->Leksem, {term nal (tv, Leksem[F H1])}.

vp(D, F)-->tv(F,H1),np(HI,D.

pron(F)-->[Leksem, {term nal (pron, Leksem[F])}.
np(F)-->pron(F).

s(D,F)-->np(F),vp(D,F).

if(D E, C-->Leksenl,{termnal (if,Leksem[DE C])}.
s(Q-->f(D EC,s(D F),comm, s(E F).

poi nt (B, C, A) -->[Lekseni, {term nal (point, Leksem[B,C A])}.
prop(L)-->[Leksem ,{term nal (prop, Leksem[L])}.
np(L)-->prop(L).

tv(K, L,B)-->[Leksen],{termnal (tv, Leksem[K L,B])}.

vp(K, B)-->tv(K, L, B),np(L).

prop(K)-->[Leksem ,{term nal (prop, Leksem[K])}.
np(K) - - >prop(K).

s(B)-->np(K), vp(K, B).

t(A)-->s(B),point(B,C A,s(C.

)}
)}
HJ,1,0)}.

