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        Data oriented parsing systems employ redundant stochastic tree substitution
grammars (STSGs) to analyse natural language utterances on the basis of an annotated corpus
(a treebank). An important component of such systems is the way in which the substitution
probability of a parse tree fragment is estimated from its occurrences in the treebank. In the
standard method for doing this, the probability of a fragment is directly correlated with its
occurrence frequency in the collection of all fragments of all corpus trees. We show that this
results in undesirable statistical biases. We therefore propose an alternative method, which
estimates the substitution probability of a fragment as the probability that it has been involved
in the derivation of a corpus tree. We show that this method has more plausible properties.

1 Background

Data oriented parsing (DOP) [Scha, 1990] is a probabilistic approach to natural language
interpretation and disambiguation, which differs significantly from previous attempts in this
direction. Earlier probabilistic grammars were probabilistically enriched competence gram-
mars; the data oriented approach, however, defines a person’s language by a stochastic pro-
cess which recombines structures that are extracted from a representation of the person’s past
language experience, i.e., a corpus of utterances with syntactic/semantic annotations.

Data oriented language processing is usually implemented as an extremely redundant stochas-
tic tree substitution grammar (STSG). The substitutable trees employed by this grammar are
simply all the fragments that can be extracted from the corpus. The substitution probabil-
ity of a tree of a particular category is estimated as the probability of sampling it from the
collection of all fragments of the same category that is extracted from the total of all corpus
trees [Bod, 1993]. Before we go into detail about this model, we will define some notation
and terminology.

∗A concise version of this article is published [Bonnema et al., 1999] in P. Dekker and G. Kerdiles (eds.) Pro-
ceedings of the 12th Amsterdam Colloquium, Institute for Logic, Language and Computation, Amsterdam, The
Netherlands, December 1999.



1.1 Preliminaries

A context free grammar (CFG) is a four-tuple G = 〈V, T, R, S〉, where V is the set of vari-
ables (non-terminals), T is the set of terminals, R is the set of production rules, and S ∈ V
is the distinguished start symbol. The sets V , T and R are always assumed to be finite. A
CFG-derivation of γ from α is a finite sequence of applications of a rule A → β of R, that
transforms α into γ .

We use the labeled bracketing notation for a CFG-derivation τ1 ⇒ τ2 ⇒ · · · ⇒ τn of τn from
τ1 in which each τi is written using labeled parentheses. This means that for each derivation
step τi ⇒ τ j using the rule A → α, τ j is obtained from rewriting one variable A in τi

as A(α) (instead of rewriting A as α). Thus, the labeled parentheses are used as auxiliary
symbols around the right hand side of applied rules to make the denoted derivation unique.
They are not part of the described language itself. For example, a rightmost derivation of
SSSS using applications of the rule S → SS, is written as

S ⇒ S(SS) ⇒ S(SS(SS)) ⇒ S(SS(SS(SS))) (1)

Using this notation, each τi in the derivation corresponds to a parse tree (or derivation tree).
The string obtained by concatenating all leaf symbols of a parse tree τ is called its yield,
written as y(τ ). Every parse tree thus denotes a CFG-derivation of its yield.

With respect to a CFG G = 〈V, T, R, S〉 we call a parse tree τ lexicalized if y(τ ) ∈ T ∗. If
α1, . . . , αk are arbitrary parse trees and A ∈ V , we call the parse tree A(α1 · · · αk) a frag-
ment tree or fragment. If every αi is lexicalized, A(α1 · · · αk) is called a constituent tree or
a constituent. For example, the parse trees S(SS), S(SS(SS)) and S(SS(SS(SS))) displayed
in derivation (1) are all fragments, where S is not, because it is not of the form A(α1 · · · αk).
No parse tree displayed in (1) is a constituent because not one of them is lexicalized.

A parse tree τ is said to start a parse tree τ ′ iff there exists a CFG-derivation τ = α1 ⇒
· · · ⇒ αn = τ ′. If a fragment α starts a parse tree τ we call α an initial fragment of τ . For
a parse tree τ we define σ(τ) to be the set of all initial fragments of τ . If τ has no initial
fragments, we let σ(τ) = ∅. A parse tree may also occur in a parse tree according to the
following definition. (1) τ ′ occurs in τ , if τ ′ starts τ ; (2) τ ′ occurs in τ = A(α1 · · · αi · · · αk)

if τ ′ occurs in αi .

As an example, consider the lexicalized parse tree τ = S(a A(a)B(A(a)B(b))). The con-
stituents A(a), B(b), B(A(a)B(b)) and S(a AB(AB)) all occur in τ . The fragment B(AB(b))

occurs in τ but is not an initial fragment of τ . The set of initial fragments of τ is given by

σ(τ) = {S(a AB), S(a A(a)B), S(a AB(AB)), S(a A(a)B(AB)),

S(a AB(AB(b))), S(a A(a)B(AB(b))), S(a AB(A(a)B)),

S(a A(a)B(A(a)B)), S(a AB(A(a)B(b))), S(a A(a)B(A(a)B(b)))}

For two parse trees τ ′ and τ , we define f (τ ′; τ) to be the number of instances of τ ′ that occur
in τ . If τ ′ does not occur in τ , we let f (τ ′; τ) = 0. For any parse tree τ we define h(τ ) to be
the depth of τ , i.e. the number of edges along the longest path from the root to a leaf symbol
of τ . For a fragment or constituent τ we use r(τ ) to denote the (root) label or category of τ ,
such that r(A(α1 · · · αk)) = A. This implies that fragments and constituents always have an
associated category, where parse trees in general might not (i.e. if τ ∈ T ). Let N (τ ) refer to
the number of non-root symbols of a constituent τ that are non-terminal.



Throughout this paper we assume that a corpus or treebank T is given as a collection of
constituent trees τ1, . . . , τn . The term collection is used to emphasize the property that τi =
τ j may hold for i �= j . Corpus and treebank are used interchangeably. Given a treebank T ,
we define C to be the set of constituents occurring in τ ∈ T . We use σ [C] = ⋃n

i=1 σ(τi )

to refer to the set of all initial fragments of T . We sometimes use a non-terminal A ∈ V
as a subscript of the set C to denote the restriction of the set to constituents of category A.
Analogous to the definition above, σ [CA] then denotes the set of all initial fragments of CA.

The total number of instances of a parse tree τ in a corpus T is defined by f (τ ; τ1, . . . , τn) =∑n
i=1 f (τ ; τi ). In case it is clear which treebank is meant, f (τ ; τ1, . . . , τn) may be abbre-

viated to f (τ ). Given a parse tree τ �∈ T , the relative occurrence frequency or relative fre-
quency F(τ ) of τ in T is defined as F(τ ) = f (τ )/ f (r(τ )).

1.2 The Classical DOP Model

To generate a new sentence from fragments present in the corpus, the DOP model defines the
composition operation of leftmost substitution, a partial function on pairs of fragments. The
composition of fragments α and β, written as α ◦β is defined if (and only if) the label of β is
identical to the leftmost nonterminal of α. If α ◦β is defined, it denotes a copy of α in which
a copy of β has been substituted for the leftmost nonterminal of α. For example

A(BC(B D)) ◦ B(b) = A(B(b)C(B D))

while the composition A(BC(B D))◦ D(d) is undefined. The requirement to substitute on the
leftmost nonterminal makes the composition operation unique.

A leftmost derivation α1 ◦ · · · ◦ αn of a constituent τ starts with an initial fragment α1 ∈
σ(τ). Then, τ is constructed by repeatedly substituting a fragment αk+1 for the leftmost non-
terminal of the fragment (((α1 ◦ α2) · · · ) ◦ αk). For example

A(BC) ◦ B(b) ◦ C(DE (e)) ◦ D(d) = A(B(b)C(D(d)E (e)))

Bod defines the probability of substituting a fragment α = A(α1 · · · αk) for a non-terminal A,
as the number of occurrences of α in the treebank, divided by the total number of occurrences
of fragments with label A [Bod, 1993; Bod, 1995]. Thus,

p(α) = f (α)∑
α′∈σ [CA] f (α′)

(2)

For a variable A ∈ V , we will henceforth use ρ(A) = ∑
α∈σ [CA] f (α) to abbreviate the de-

nominator of the right hand side of (2). Given these substitution probabilities, the probability
of a derivation α1 ◦ · · · ◦ αm = τ of a constituent τ can be computed by taking the product
of the probabilities of the substitutions that it consists of:

p(τ ) = p(α1 ◦ · · · ◦ αm) =
m∏

i=1

p(αi ) (3)

The probability of a constituent is equal to the probability that any of its distinct derivations
is generated, i.e. the sum of the probabilities of all derivations of that constituent. Let τ be a
constituent that is derived from the corpus by derivations d1, . . . , dn , where each d j consists
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Figure 1: Example treebank.

the fragments α1 j ◦ α2 j ◦ · · · ◦ αm j j = τ . Thus, αi j denotes the i-th fragment of derivation
j . Then the probability P(τ ) of τ is given by

P(τ ) =
n∑

j=1

m j∏
i=1

p(αi j ). (4)

1.3 Problems with DOP

The most important innovation that the data oriented approach has brought to stochastic pars-
ing is the decision to use all fragments from the corpus directly as a stochastic tree substi-
tution grammar. In this section we question the decision to define the probability of such a
fragment as the relative frequency of the fragment among all fragments with the same root
label, as in equation (2). For a constituent τ = A(τ1τ2 · · · τk), the size of the set of initial
fragments is given by the recursive equation |σ(τ)| = ∏k

i=1(|σ(τi )| + 1). The exponential
nature of the fragment extraction operation, implies that large corpus trees make a dispropor-
tionately large contribution to the probability mass of the fragments. The biggest constituent
of category A that exists in the data, determines the order of magnitude of the probability of
all the fragments in that category.

The effect that this property of the model has on the probability which DOP assigns to con-
stituents, can be witnessed even with very small treesizes. Figure 1 shows a toy corpus con-
sisting of three parse trees. The preferred analysis of the string ab, given this treebank, should
intuitively be 1(b). We will show why this is not the analysis DOP will choose. ρ(A) = 134,
so all fragments of category A get probability 1/134. ρ(X) = 4, on the other hand. This
is why X (Y (a)Z (b)) is chosen as the preferred analysis of ab. It thus turns out that even the
sum of the probabilities of all four ways of deriving the correct answer 1(b), is smaller than
the probability assigned to the one possible derivation of X (Y (a)Z (b)).



1.4 Constraining the size and form of fragments

Given the problems described above, how was the the DOP model actually used with tree-
banks of non-trivial size? The answer lies in a simple heuristic: a set of constraints is im-
posed on the size and form of the fragments that are taken into consideration. Khalil Sima’an
[Sima’an, 1999] suggested constraints on four different parameters: maximum depth of a
fragment, maximum number of substitution sites in a fragment, maximum number of lexi-
cal items, and maximum number of consecutive lexical items in a fragment. The right con-
straints on the number of substitution sites and (consecutive) terminals compensate for the
bias on fragment extraction. To deal with example 1 above, for instance, we only need a con-
straint on the number of substitution sites to get the desired result. Only a very small percent-
age of the very large fragments complies with these constraints, while they do not particularly
restrict the number of smaller fragments. Reasonable behavior on actual data was achieved
with fragments having the following maximum values: two substitution-sites, three consecu-
tive lexical items, nine lexical items in total, and depth four. Experiments showed that lower
and higher values of the depth parameter caused a decrease in accuracy [Bonnema et al.,
1997].

2 A New Probability Model

In this section a new probability model for DOP is proposed, in which the probability of a
fragment tree has a closer connection with the extent to which it is supported by occurrances
in the treebank. The problems discussed in section 1.3 show that the substitution probabil-
ity of a fragment (relative to all fragments of the same category), is not proportional to the
relative occurrence frequency of the fragment in the treebank. The classical DOP model thus
employs a probability measure that invalidates the principle of prefering frequently occur-
ring structures over alternatives that occur less frequent, and should therefore be abolished.
Is it possible to maintain the basic ideas behind the data oriented parsing approach, while
avoiding the disturbing properties shown above?

2.1 Fragment Probability

Let us reconsider the basic idea behind DOP. We think of every utterance as being generated
by a stochastic process which combines fragments by means of the substitution operation.
We do not have direct evidence about which fragments people actually use, and with which
probabilities. But we can get indirect evidence about this, by (1) collecting a random sample
from the population of utterances; and (2) registering a linguist’s intuitions about the struc-
ture and interpretation of these utterances. Recall that the underlying hypothesis is that the
linguist has intuitions about structure that we want to take seriously; but we do not expect
her to have reliable introspections about the massively parallel unconscious processes that
give rise to these intuitions. The two processes described result in what we call a treebank.

Such a treebank must be transformed into a hypothesis concerning the collection of substi-
tutable fragments and their substitution probabilities. If we stick to DOP’s process of con-
structing new parse trees from fragments occurring in the treebank, the basic structural units
for which we want to collect evidence, are the fragments the newly constructed parse tree is



composed of. The evidence for these fragments is provided in the form of a collection of an-
notated utterances in which these fragments might be used. The more a particular fragment
is involved as a building block in the corpus trees, the more positive evidence we have for it.

To collect corpus evidence for a single fragment, we should therefore measure the number
of times the fragment is used in the annotated corpus trees. To do this, we view every corpus
tree as the set of all its derivations, each consisting of a sequence of fragment substitutions.
The evidence for a fragment supplied by a single constituent is then given by a combination
of two factors: the relative frequency of the constituent, and the fraction of the derivations of
this constituent that contain a substitution of the fragment. The latter measurement we will
call the fragment distribution with respect to a particular constituent.

Given a fragment α and a constituent τ , we may define the fragment distribution φ(α, τ) as
the fraction of all derivations of τ that start with α. Let δ(τ ) denote the set of all possible
derivations of a constituent τ . Then,

φ(α, τ) = |{d j ∈ δ(τ ) : α1 j ◦ · · · ◦ αd j j = τ }|
|δ(τ )| (5)

with α1 j = α.

For each constituent τ with the same category as the fragment α, we calculate the prior prob-
ability that the fragment α is used in a derivation of τ , multiplied by the probability that we
select the constituent τ from the treebank. To compute the substitution probability of a frag-
ment on the basis of the whole treebank, we then take the sum of this product over the set of
constituents present in the treebank:

p′(α) =
∑
τ∈CA

F(τ )φ(α, τ ) (6)

In any derivation of τ a non-root variable on τ is either internal to a fragment, or a substitution
variable. Since any combination is allowed, the cardinality of δ(τ ) is equal to the cardinal-
ity of the powerset of the set of all non-root variables in τ . Hence, we have |δ(τ )| = 2N (τ ).
By rewriting equation (5) using the identity |δ(τ )| = 2N (τ ), we see that the fragment distri-
bution φ(α, τ) is independent of the particular constituent τ . The number of derivations of
τ that start with α is given by substracting the available substitution variables of α from the
available substitution variables of τ . If τ has N (τ ) substitution variables for which to choose
between substituting (for this variable) or not, and an initial fragment α is given, then only
N (τ ) − N (α) substitution nodes remain available. Substituting in (5) gives

φ(α, τ) = 2N (τ )−N (α)

2N (τ )
= 2N (τ )2−N (α)

2N (τ )
= 2−N (α) (7)

We define φ(α, τ) = φ(α) = 2−N (α), if α ∈ σ(τ), and let φ(α, τ) = 0 for constituents τ

such that α �∈ σ(τ). Equation (7) shows that the prior probability that a fragment α is used
in a derivation of a constituent τ , depends on the complexity of α alone. This is an important
property of the proposed probability model.

Since φ(α, τ) = 0 for constituents τ such that α �∈ σ(τ), we restrict the sum over CA in equa-
tion (6) to constituents τ that are started by α, i.e. for which α ∈ σ(τ) holds. If Cα denotes
the set of all constituents of C that are started by α, then

∑
τ∈Cα

f (τ ) = f (α) and therefore∑
τ∈Cα

F(τ ) = F(α). Thus, taking the sum of the relative frequencies of all constituents
that are started by the fragment α, amounts to taking the relative frequency of α itself.



Given a treebank T and the set C of constituents occurring in T , we define the probability
of a fragment α to be given by the probability function p′ : σ [C] → [0, 1], with

p′(α) = 2−N (α)F(α) (8)

Fragment probability as defined in (8) may be used by an STSG as the probability function
on elementary trees. This is permitted only if the sum of p′ over all fragments of a particular
category is equal to unity. We will consider this in theorem 2.1 on page 8. DOP parsers may
employ this distribution, keeping DOPs original combination process of constructing new
parse trees from corpus fragments intact. A parse tree probability is then defined as usual.
Let τ be a parse tree with n possible derivations d1, . . . , dn . Each derivation d j consists of
m j fragments α1 j ◦α2 j ◦ · · · ◦αm j j = τ. The probability P(τ ) of the parse tree τ is given by

P(τ ) =
n∑

j=1

m j∏
i=1

2−N (αi j )F(αi j ). (9)

2.1.1 Properties of the Fragment Distribution

In this section we will consider the question wether the fragment distribution φ(α) = 2−N (α)

is really a distribution. More specifically, we investigate whether∑
α∈σ(τ)

φ(α) = 1

holds for all conceivable constituents τ .

Given a fragment α ∈ σ(τ) we define the restricted subset δα(τ ) ⊆ δ(τ ) to be the set of
derivations of τ that are started by α, i.e.

δα(τ ) = {d j ∈ δ(τ ) : α1 j ◦ · · · ◦ αd j j = τ and α1 j = α}
Thus, a fragment α partitions the set of derivations of τ in subsets δα(τ ) of derivations that
start with α. We may prove the lemma below, simply by using the distribution of cardinality
over the disjoint subsets of this partition, given by

|δ(τ )| =
∣∣∣∣∣

⋃
α∈σ(τ)

δα(τ )

∣∣∣∣∣ =
∑

α∈σ(τ)

|δα(τ )|

Lemma 2.1 For every constituent tree τ ,∑
α∈σ(τ)

2−N (α) = 1. (10)

Proof.

∑
α∈σ(τ)

2−N (α) =
∑

α∈σ(τ) 2N (τ )−N (α)

2N (τ )
=

∑
α∈σ(τ) |δα(τ )|

|δ(τ )|

= | ⋃α∈σ(τ) δα(τ )|
|δ(τ )| = |δ(τ )|

|δ(τ )| = 1.



2.1.2 Properties of the Fragment Probability Function

The next question of interest is wether the fragment probability p′(α) = φ(α)F(α) sums to
unity over the initial fragments of all constituents of a particular category A, given a fragment
distribution function φ such that for all τ ,∑

α∈σ(τ)

φ(α) = 1 (11)

holds. The fragment probability function may be used as the probability function for ele-
mentary trees in an STSG, and as a DOP-distribution like in (9), provided this condition is
met.

We calculate the sum of the values of p′ for all fragments using

∑
α∈σ [CA]

φ(α)F(α) =
∑

α∈σ [CA]

(
φ(α)

∑
τ∈Cα

F(τ )

)
(12)

which partitions the set σ [CA] into 2n − 1 disjoint subsets. Let CA = {τ1, . . . , τn}, and let T
be a set of n-tuples over {0, 1}, defined as

T = {0, 1}n \ 〈0, 0, . . . , 0〉 (13)

We use projection functions πi to access the individual elements of tuples. Given arbitrary
sets A1, A2, . . . , Am , a projection is defined on the m-ary cartesian product as
〈a1, a2, . . . , am〉 �→ ai . Each tuple of T corresponds to a subset of σ [CA] according to a
function g : T → 2σ [CA] which is defined as

〈a1, a2, . . . , an〉 �→
⋂
ai =1

σ(τi ) \
⋃
ai =0

σ(τi ) (14)

For a A ⊆ T , we let g[A] = ⋃
t∈A g(t). We further define two kinds of groups of tuples.

For any k such that 1 � k � n define

T k = {t ∈ T :
n∑

i=1

πi (t) = k} and T (k) = {t ∈ T : πk(t) = 1} (15)

The set T k contains all tuples in which exactly k ones occur. By definition of g this implies
that for t ∈ T k , g(t) consists of fragments shared by exactly k constituents in CA. Each tuple
in T with a one as its k-th element is joined in the set T (k). If t ∈ T (k) then g(t) ⊆ σ(τk).
All subsets g(t) with t ∈ T (k) together form σ(τk). Differently put, g[T (k)] = σ(τk). The
set σ [CA] is partioned by T in |T | = 2n − 1 disjoint subsets

⋃
t∈T g(t) = σ [CA] and thus for

any two t, t ′ ∈ T such that t �= t ′ the intersection g(t) ∩ g(t ′) = ∅.

For the case n = 3, for example, with CA = {τ1, τ2, τ3}, the fragment space is partitioned
into 7 disjoint subsets, by

T = {〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉, 〈1, 1, 0〉, 〈1, 0, 1〉, 〈0, 1, 1〉, 〈1, 1, 1〉} (16)

The first three tuples in (16) are the elements of T 1, the second three are the elements of T 2,
and the last tuple is the only element of T 3.

Theorem 2.1 Let C be the set of constituents occurring in a corpus T . Then,∑
α∈σ [CA]

2−N (α)F(α) = 1 (17)



Proof. We prove the theorem by showing that∑
α∈σ [CA]

2−N (α)F(α) =
∑
τ∈CA

F(τ ). (18)

using applications of lemma 2.1 (page 7). Let CA = {τ1, . . . , τn}, and let T and g be defined
as above. Then∑

α∈σ [CA]

2−N (α)F(α)

=
∑

α∈σ [CA]

(
2−N (α)

∑
τ∈Cα

F(τ )

)

=
∑
t∈T 1

( ∑
α∈g(t)

φ(α)

n∑
i=1

πi (t)F(τi )

)
+ · · · +

∑
t∈T n

( ∑
α∈g(t)

φ(α)

n∑
i=1

πi (t)F(τi )

)

=
∑
t∈T 1

n∑
i=1

(
πi (t)F(τi )

∑
α∈g(t)

φ(α)

)
+ · · · +

∑
t∈T n

n∑
i=1

(
πi (t)F(τi )

∑
α∈g(t)

φ(α)

)

= F(τ1)

( ∑
t∈T (1)

∑
α∈g(t)

φ(α)

)
+ · · · + F(τn)

( ∑
t∈T (n)

∑
α∈g(t)

φ(α)

)

= F(τ1)
∑

α∈g[T (1)]

φ(α) + · · · + F(τn)
∑

α∈g[T (n)]

φ(α)

= F(τ1)
∑

α∈σ(τ1)

φ(α) + · · · + F(τn)
∑

α∈σ(τn)

φ(α)

= F(τ1) + · · · + F(τn) (using lemma 2.1)

Another property of the probability model is seen by factoring out the fragment distribution.
The fragment distribution φ(α) = 2−N (α) distributes over the composition operation on frag-
ments, so that

φ(α ◦ β) = φ(α)φ(β) (19)

For an arbitrary derivation d j of τ such that τ = α1 j ◦ · · · ◦ αm j j it holds that

2−N (τ ) = 2−N (α1 j ◦···◦αm j j ) = 2− ∑m j
i=1 N (αi j ) =

m j∏
i=1

2−N (αi j ). (20)

This means that, using (20), expression (9), on page 7, can be rewritten as

P(τ ) =
n∑

j=1

m j∏
i=1

2−N (αi j )F(αi j ) =
n∑

j=1

m j∏
i=1

2−N (αi j )

m j∏
i=1

F(αi j )

=
n∑

j=1

2−N (τ )

m j∏
i=1

F(αi j ) = 2−N (τ )
n∑

j=1

m j∏
i=1

F(αi j )

= 1

n

n∑
j=1

m j∏
i=1

F(αi j ) with n = 2N (τ )

This shows that the probability of a parse tree can be viewed as constituting the average of
products of the relative frequencies of the fragments involved in each possible derivation of
the parse tree.
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Figure 2: Example treebank, corresponding to PCFG G

2.2 Behavior of the New Probability Model

We now demonstrate how the new DOP model assigns probabilities to trees, and make a com-
parison with probabilistic context free grammars (PCFGs) [Booth and Thompson, 1973] and
former DOP models. We demonstrate that the new model is identical to a PCFG model when
the independence assumption, made by all PCFG models, is validated by the data. Subse-
quently, we show with an example how the new model improves on a PCFG when the inde-
pendence assumption is not validated. It will become apparent that the former DOP models
did not improve upon PCFG models in this way.

The first example concerns a hypothetical treebank, in which the trees do not exhibit any
dependencies between the PCFG rewrite rules that constitute them. The formal definition of
such a treebank is given below.

Let G be a PCFG-grammar. With respect to a treebank T = τ1, . . . , τn , the production
probabilities of G are given by the standard relative frequency estimator [Chi and Geman,
1998]: p̂(A → α) = f (A → α)/ f (A). The probability that G assigns to a tree τ , is given
by p(τ ) = ∏

(A→α)∈G p(A → α) f (A→α;τ).

Let T have the property that for all fragments β occurring in T , the following holds.

f (β)

f (r(β))
=

∏
(A→α)∈G

p(A → α) f (A→α;β) (21)

This equation expresses the proposition that the application of a rewrite rule of G in T , is an
independent event. Below, we will call this the independence constraint. Figure 2 shows a
possible instantiation of T , where G contains the rules S → A and S → B with probability
1/4, and S → AB, A → 0, A → 1, B → 0 and B → 1 with probability 1/2. Figure 3
shows the relative frequencies that are imposed upon the trees by G and the independence
constraint.

Given the independence constraint, we can demand of a language model that the probabilities
it assigns to trees occurring in the data, equals their observed relative frequency. A proba-
bility assignment that deviates from this observed relative frequency, would mean a bias of
the model that is not warranted by the data.

By definition of T , a PCFG employing the relative frequency estimator, will assign correct
probabilities to all trees in T . Figure 3 shows that the new DOP model assigns correct prob-
abilities to the trees as well. A simple demonstration will show that under the independence



(1) (2) (3) (4) (5) (6) (7) (8)

Rel. freq. of tree 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
PCFG 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

New DOP 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
Former DOP 1/12 1/12 1/12 1/12 1/6 1/6 1/6 1/6

Figure 3: Relative frequencies and probabilities of the trees in figure 2

constraint the new DOP model is always equivalent to a PCFG model, for any choice of G.
Let τ have n possible derivations d1, . . . , dn . Each derivation d j consists of m j fragments
α1 j ◦ α2 j ◦ · · · ◦ αm j j = τ . Then,

P(τ ) = 2−N (τ )
n∑

j=1

m j∏
i=1

f (βi )

f (r(βi ))
by (9)

= 2−N (τ )
n∑

j=1

m j∏
i=1

∏
(A→α)∈G

p(A → α) f (A→α;βi ) by (21)

= 2−N (τ )
n∑

j=1

∏
(A→α)∈G

p(A → α) f (A→α;τ)

=
∏

(A→α)∈G

p(A → α) f (A→α;τ) n = 2N (τ )

Figure 3 shows that the former DOP model assigns a probability to binary branching trees
that is twice as high as the probability assigned to the unary branching ones. In this case,
these probabilities are clearly wrong. In the next example we will see how the three models
behave if we drop the independence constraint.

Take the trees in figure 2, with their relative frequencies as given in figure 3. We construct a
new corpus, by taking all instances of tree (2), and swapping their A(1) with the A(0) in all
instances of tree (5). This action causes tree (2) to become equal to tree (1), and tree (5) to
become equal to tree (7). Our new corpus now consists only of instances of the 6 trees given
in figure 4, whose relative frequencies are given in figure 5.

It is obvious that the independence constraint no longer applies to our new treebank. Selec-
tion of the rule S(A) for example should now increase the probability of A(0) as a contin-
uation of A. Figure 5 gives the probabilities that the different models assign to each of the
trees. To the PCFG model the treebank is identical to the previous one, since the relative fre-
quency of rule application did not change. The new DOP model, on the other hand, seems
to accurately represent the dependencies in the trees. Take for example the four trees that
have an identical relative frequency of 1/8: trees (2), (3), (5) and (6). Tree (5) has a clear
internal dependency. The data show that S(AB) and A(0) exhibit a tendency to avoid each
other. Tree (6) has the adverse dependency. We see this dependencies reflected in the prob-
abilities assigned to trees (5) and (6), that are respectively 1/64 below and above the PCFG

probabilities.

Constituents (2) and (3) exhibit no internal dependencies between rules. The fact that S(B)

is selected, does not influence the probability of B being rewritten as either 0 or 1. Their as-
signed probability is therefore equal to the probability assigned by the PCFG model, and thus
falls exactly between the values assigned to (5) and (6). The probabilities of the former DOP
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Figure 4: Example of a treebank exhibiting dependencies

(1) (2) (3) (4) (5) (6)

Rel. freq. of tree 1/4 1/8 1/8 1/4 1/8 1/8
PCFG 1/8 1/8 1/8 1/8 1/8 1/8

New DOP 12/64 8/64 8/64 11/64 7/64 9/64
Old DOP 6/48 4/48 4/48 11/48 7/48 9/48

Figure 5: Relative frequencies and probabilities of the trees in figure 4

model also show differences related to internal dependencies, but even greater differences
related to difference in size.

3 Computational Issues

The new DOP model can be used to choose the most probable parse tree, given several al-
ternatives. A parsing/disambiguation algorithm using the new model, involves two steps.
(1) Creation of a parse forest of an input string, using, for example, a CFG-grammar that is
obtained by extracting all CFG-rules from the fragments in the corpus. Many well-known
space and time optimalization techniques can be applied. (2) Selection of the most probable
analysis, by ranking every tree τ in the parse forest by the value of P(τ ) as assigned by our
new DOP.

A real treebank, such as the Penn Wall Street Journal Treebank [Marcus et al., 1993], con-
tains 50.000 trees, and covers more than one million words. The number of fragments that
can be extracted from these trees, as well as the number of possible derivations for a parse
tree of average size, is many orders of magnitude beyond practical computability. To approx-
imate this probability nonetheless, we need to obtain a manageable and representative set of
fragments, with a reliable probability assigned to them.

Sampling fragments To approximate the substitution probability of a fragment, we use a
sampling algorithm consisting of two steps. The two steps in the sampling process corre-
spond to the two terms in the definition of fragment probability: the relative frequency of
the constituent F(α), and the fragment distribution φ(α) = 2−N (α).



The first step in the sampling algorithm, is to randomly pick a constituent τ from the set of
constituents C in the treebank. The probability of picking τ is determined by its frequency in
the treebank. The second step, is to pick an initial fragment of τ . The probability of picking
a particular initial fragment α, should correspond to the theoretical prior probability that α

starts a derivation of τ , namely 2−N (α). This is achieved by first picking a derivation d from
the uniformly distributed set of possible derivations δ(τ ) of τ , and second, taking the first
element of d .

These two steps are iterated n times, resulting in a sample of n constituents (sample 1), and
n fragments (sample 2). We use f 1(τ ) to denote the frequency of τ in sample 1, and f 2(α)

for the frequency of α in sample 2. Note that the frequency of trees of a particular category,
f 1(r(τ )), is equal in both samples: Every time a constituent of category A is picked in step
1, an initial fragment of category A is picked in step 2.

We define the estimated probability of a fragment α to be

p̂(α) = f 2(α)

f 1(r(α))

The term p̂(α) expresses the number of times α was picked relative to the total number of
fragments of the same category as α that were picked. This measure must necessarily sum
to unity for all fragments of the same category. Below we will show how p̂(α) tends toward
p(α) = F(α)2−N (α).

Using f 1(τα) for the sampled frequency of constituents τ starting with α, we can rewrite the
definition of p̂(α) as follows:

p̂(α) = f 2(α)

f 1(r(α))
= f 1(τα)

f 1(r(α))

f 2(α)

f 1(τα)

The first term in this product is the sampled estimate of F(α), as defined in section 1.1 on
page 3. The second term is an estimate of the fragment distribution φ(α) = 2−N (α). Since
each term will converge to the correct relative frequency in the two distributions we sampled
from, we have for sample size n:

lim
n→∞

f 2(α)

f 1(r(α))
= lim

n→∞
f 1(cα)

f 1(r(α))

f 2(α)

f 1(cα)
= F(α)2−N (α)

Choosing the most probable analysis Note that a manageable set of fragments still does
not mean we can distinguish the most probable analysis among all possible parses of a large
sentence. Sima’an [Sima’an, 1996] has shown that the problem of computing the most prob-
able parse is not solvable by deterministic polynomial time algorithms. This result applies to
both our new and the former DOP models. However, several techniques exist to approximate
this value by random sampling. A description of such so-called Monte Carlo techniques can
be found in Hammersley et al. [Hammersley and Handscomb, 1964].

4 Conclusion

We have given a detailed demonstration of counterintuitive predictions which the “classical”
DOP model generates. The impact that a piece of data has on the predictions of a data ori-
ented parsing system seems to be primarily determined by the sizes of the trees that it occurs



in, rather than by its overall occurrence frequency. We proposed an alternative definition
of fragment probability that does not suffer from such biases. The measure for the involve-
ment of a fragment in the derivations of a lexicalized tree is shown to be a prior probability
depending on the complexity of the fragment alone. We showed how this measure sums to
unity over all possible fragments of a lexicalized tree. We used this result to show that the
proposed model is a probability function over the set of all fragments of a given category, and
consequently, defines an STSG with proper production probabilities. In a detailed example,
we demonstrated how the probability of parse trees, as assigned by the new model, compares
with those assigned by probabilistic context free grammars and by “classical” DOP models.
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